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ABSTRACT

Background: Helminths infections (i.e., S. haematobium, S. mansoni and Hook-

worm) affect more than a quarter of world’s population, with consequences for nu-

tritional and educational development of infected individuals. They are a common

cause for morbidity, especially among children in undeveloped countries. Control

strategies require better understanding of helminths epidemiology. As such, appro-

priate statistical methods to model infection prevalence and intensity are crucial.

This study aimed at joint modeling of helminths infection prevalence and intensity

using robust methods in order to understand the epidemiology.

Methods: Zero altered models were fitted and applied to two datasets (one from

Malawi and another from Zambia). Malawi data were collected in a cluster ran-

domized study, in Chikhwawa district in 2004, with 18 villages randomised to

intervention and control arms. Zambia data were collected from school children in

a cross-sectional study in Lusaka province in 2004. A range of Zero Inflated (ZI)

models (ZI-Poisson [ZIP] and ZI-Negative Binomial [ZINB]) and Hurdle mod-

els (Poisson Logit Hurdle [PLH] and Negative Binomial Logit Hurdle [NBLH])

were developed for infection analysis, adjusted for age, sex, education level, treat-

ment arm, occupation, and polyparasitism, among others. Model estimation was

based on maximum likelihood estimation (MLE) and model selection was based on

Akaike Information Criteria (AIC). Exponential and Spherical variogram models

were used to estimate residual spatial effects.

Results: Chikhwawa study had a total of 1, 642 participants. Overall, 55.4 % were

female and mean age of study population was 32.4 with SD = 22.8. Prevalence

was as follows: S. haematobium = 19.4 %, S. mansoni = 5.0 % and Hookworm

= 22.9 %. Schistosomiasis and Hookworm infections were highly aggregated in a
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relatively small and heavily infected population proportion. A large proportion

of individuals were non-egg excretors (S. haematobium = 85.8 %, S. mansoni =

95.7 % and Hookworm = 80 %) for outcomes of interest hence data had a large

number of zeros.

Data showed overdispersion evidence with p-value <0.0001. NBLH model offered

the best fit to data with lowest AIC = 3, 482. Schistosomiasis infection was

associated with age (RR = 0.96); with the highest intensity in school-age children.

Fishing (RR = 0.73) and working in gardens (RR = 1.21) along the Shire River

were also clear risk factors. Hookworm showed a high intensity in older people

than in younger children and also high intensity in males than in females (RR =

1.19). Intervention reduced both infection intensity and prevalence in intervention

arm as compared to control arm. Residual spatial effects showed some degree of

spatial dependence across the study area.

The Zambia study had a total of 2040 participants. Overall, 50.4 % were female

and mean age of study population was 9.98 with SD = 2.14. Urinary Schistoso-

miasis prevalence was 9.6 %. NBLH model offered the best fit with lowest AIC

= 3, 230. Schistosomiasis prevalence was associated with age (AOR = 0.69), sex

(AOR = 1.17), altitude (0.37), NDVI (AOR = 1.04) and temperature (AOR =

0.99). Infection intensity was associated with age (RR = 0.55), sex (RR = 1.28),

altitude (RR = 0.11), temperature (RR = 0.84), and NDVI (RR = 1.07).

Conclusion: Helminths were highly localized, with small section of people har-

boring parasites; showing heterogeneous infection risk for both Malawi and Zambia

settings. Joint modeling approach allowed identification of risk factors for infec-

tion presence and severity hence provide a platform to design combative control

efforts. NBLH offered best-fit to data with capability to handle overdispersion,

excess zeros and capture true zeros in the data. Its implementation and inter-

pretation, ease of components, and its direct link with observed data make it a

valuable alternative for analysing zero inflated count data.
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Chapter 1

INTRODUCTION

Human helminths infections (intestinal nematode infections such as Ascaris lum-

bricodes, Trichuria trichura, and Hookworm and schistosome infections like Schis-

tosoma haematobium and Schistosoma mansoni) affect more than a quarter of the

world’s population, with consequences in health nutritional and educational de-

velopment of infected individuals (Brooker, Hay, Tchuente, & Ratard, 2002). The

burden of disease caused by infection with Schistosomiasis and soil-transmitted

helminths (STH) remains enormous. According to WHO (2006), about 2 billion

people are affected worldwide, of whom 300 million suffer associated severe mor-

bidity. In 1999, WHO estimated that these infections represented more than 40

% of the disease burden caused by all tropical diseases, excluding malaria (WHO,

2001a).

Helminths are parasitic worms found in intestinal tract, urinary tract, blood and

other tissues. Although helminths can infect all members of a population, it is clear

that there are specific groups who are at greater risk of morbidity than others,

and who are more vulnerable to harmful effects of chronic infections (Hotez et

al., 2006). For schistosomes and STH, the most vulnerable groups are school-age

children and women of child-bearing age, including adolescent girls (Brooker et

al., 2009).

Schistosomiasis, or bilharzia, is caused by worms (flukes) that have a complex
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life cycle involving freshwater snails as intermediate hosts. Several species exist,

with S. mansoni, S. japonicum, and S. haematobium being the most prevalent.

Chronic infection with S. mansoni and S. japonicum causes periportal liver fi-

brosis and portal hypertension with ascites and oesophageal varices. Long term

infection with S. haematobium is associated with bladder scarring, renal obstruc-

tion, chronic urinary infection, and possibly bladder carcinoma (National Travel

Health Network and Centre, 2008).

Hookworms are nematodes in the super family Ancylostomatoidea. In their normal

hosts, they are parasites of intestinal tract (Center for Food Security and Public

Health, 2005). In humans, some zoonotic Hookworms can cause cutaneous larva

migrans. Most cases of classic Hookworm disease are caused by Ancylostoma

duodenale or Necator americanus, species usually found only in humans (Center

for Food Security and Public Health, 2005).

1.1 Disease burden and Endemicity

Hookworm is a leading cause of maternal and child morbidity in undeveloped

countries of the tropics and subtropics (Larocque, Casapia, Gotuzzo, & Gyorkos,

2005). In susceptible children, Hookworms cause intellectual, cognitive and growth

retardation, intrauterine growth retardation (IUGR), prematurity and low birth

weight among new infants born to infected mothers (Bethony, Brooker, Albon-

ico, & Hotez, 2006). In developed countries, Hookworm infection is rarely fatal,

but anaemia can be significant in a heavily infected individual. Bethony et al.

(2006) report that STHs are one of the world‘s most important causes of physi-

cal and intellectual growth retardation. Yet, despite their educational, economic,

and public-health importance, they remain largely neglected by the medical and

international community. The neglect stems from three features: first, those who

are most affected are the world’s most impoverished, particularly those who live

on less than US$2 per day; second, the infections cause chronic ill health and have
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insidious clinical presentation; and third, quantification of helminths infections

effect on economic development and education is difficult.

Hookworms injure their human host by causing intestinal blood loss leading to

iron deficiency and protein malnutrition (Pritchard & Hotez, 1995). The parasite

induces blood loss directly through mechanical rupture of host capillaries and ar-

terioles followed by release of a battery of pharmacologically active polypeptides

including anticoagulants, antiplatelet agents, and antioxidants (Brooker, Hotez,

Bethony, & Silva, 2003). Chronic blood loss and depletion of the body’s iron

stored in heavy Hookworm infections often lead to iron-deficiency anaemia, a con-

dition better known as Hookworm anaemia (Lwambo, Bundy, & Medley, 1992).

Some investigators believe that Hookworm anaemia is highly focal, and in some

instances more common in coastal regions (Lwambo et al., 1992). Studies of

anaemia associated with Hookworm blood loss indicate a disproportionate reduc-

tion in plasma haemoglobin concentration after some threshold worm burden is

exceeded (Bundy, 1995).

Bethony et al. (2006) report evidence to support high disease-burden estimates

from STH infections, and highlights Hookworm importance as a threat to mater-

nal and child health. For example, cross-sectional evidence from Africa and Asia

showed that 30 - 54% of moderate to severe anaemia in pregnant women was at-

tributable to Hookworm. Intervention studies suggest that antenatal anthelmintics

substantially increase maternal haemoglobin concentrations, birth weight and in-

fant survival. In addition, Hookworm associated iron deficiency during childhood

is partly responsible for physical and mental growth retardation effects (Brooker

et al., 2003). Growth-stunting effects of Hookworm were well documented by the

early part of the 20th Century (Brooker et al., 2003), as were some of the effects

of Hookworm on intelligence quotient (Brooker et al., 2003). However, it is only

within the last few years that Hookworm-induced iron deficiency was understood

to also exert more subtle, yet profound, adverse effects on childhood memory,
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reasoning ability and reading comprehension (Brooker et al., 2003).

Hookworm distribution of infection intensity and prevalence is strongly age depen-

dent (Chan, Bradley, & Bundy, 1997). However, in contrast to other common in-

testinal helminths such as Ascaris lumbricoides (large roundworms) and Trichuris

trichiura (whipworm) and also Schistosomiasis, where children are more heavily

affected, Hookworm is more common in adults. Chan et al. (1997) report that it

is generally thought that differences in levels of Hookworm infection in children

and adults are due to exposure differences, as Hookworm is generally transmitted

in the fields as opposed to near houses; as is the case with Ascaris lumbricoides

and Trichuris trichiura.

Schistosomiasis exhibits a focal distribution, and symptoms are often difficult to

recognize both by individuals infected and by health personnel who normally staff

primary health care facilities in rural Africa (Fenwick & Hotez, 2009). Addi-

tionally, early stages of Schistosomiasis, when treatment is most beneficial, often

show only mild yet debilitating symptoms, which lead to serious consequences

later in life (Fenwick & Hotez, 2009). Through a full consideration of amount

of end-organ pathologies to the liver (in case of S. mansoni and S. japonicum

infections), and to the bladder and kidneys (in case of S. haematobium infec-

tion), together with chronic morbidities associated with impaired child growth

and development, chronic inflammation, anaemia, and other nutritional deficien-

cies, some new disease burden assessments estimated that Schistosomiasis accounts

for up to 70 million disability-adjusted life years (DALYs) lost annually (King &

Dangerfield-Cha, 2008). This global burden estimate exceeds that of malaria or

tuberculosis, and is almost equivalent to DALYs lost from HIV/AIDS (King &

Dangerfield-Cha, 2008). Further, almost 300,000 people die annually from Schis-

tosomiasis in Africa (Fenwick & Hotez, 2009), and there is evidence that female

genital Schistosomiasis caused by S. haematobium may significantly increase like-

lihood of contracting HIV/AIDS (Kjetland, Ndhlovu, Gomo, & Mduluza, 2006;
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Mbabazi, Andan1, Chitsulo, & Downs, 2011). Urogenital Schistosomiasis, caused

by infection with S. haematobium, is widespread and causes substantial morbidity

in Africa. Schistosomiasis infection has been suggested as an unrecognized risk

factor for incident HIV infection (Mbabazi et al., 2011). In individuals of repro-

ductive age, urogenital Schistosomiasis remains highly prevalent and, likely, under

diagnosed (Mbabazi et al., 2011).

Schistosomiasis is a strictly regional endemic disease. It is dependent on On-

comelania snail distribution. There are three (3) types of endemic areas, namely,

marshland and lake regions, hilly and mountainous regions, and plain regions with

water-way networks. In plain regions, snails are distributed along river systems

and Schistosomiasis spreads widely (Jiagang, 2003). The range of Schistosomiasis

endemicity can change either through movements of infected persons to areas in-

habited by host snails, or artificial creation of new habitat (that is, dams, canals,

rice fields) for infected snails.

1.1.1 Geographical distribution

It is estimated that 85 % of people infected with Schistosomiasis are from Africa

(Chitsulo, Engels, Montresori, & Savioli, 2000), and that 1.5 billion are infected

with STHs worldwide (Hanzel, Karanja, Addiss, Hightower, & Rosen, 2003).

Schistosomiasis is present worldwide, but it occurs most frequently in Sub-Saharan

Africa (SSA), Brazil, southern China, and the Philippines (National Travel Health

Network and Centre, 2008). Schistosomiasis is endemic in 74 countries and ter-

ritories; and in particular, S. haematobium is endemic in 53 countries in Middle

East and most of the African continent including the islands of Madagascar and

Mauritius (Chitsulo et al., 2000), whereas S. mansoni is mostly endemic in SSA

(Alemu et al., 2011). Roughly, 600 million cases of Hookworm are distributed

predominantly in agricultural areas and among estimated 2.7 billion people who

live on less than US$2 per day (P. Hotez, 2008). Environment and socioeconomic
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status represent the two most important determinants for acquiring Hookworm.

Hookworm infection is closely associated with poverty; inadequate sanitation, poor

housing construction, and lack of access to essential medications are major factors

in this relationship.

1.2 Epidemiology and control

Helminths infection is widely spread throughout tropical and subtropical areas

(Bethony et al., 2006), with prevalence in some communities being as high as 90

%. Hookworm infection flourishes in rural communities with moist shaded soil

and inadequate latrines and are linked to lack of sanitation . Agricultural laborers

have traditionally been at high risk of Hookworm infection. Improper disposal of

human faeces and the common habit of walking barefoot are important epidemi-

ologic features. The predisposing factors for Schistosomiasis infection include:

swimming, bathing, fetching and washing in infected freshwater habitats.

Several defined measures of helminth transmission are valuable to guide implemen-

tation of control programmes. The most common measure is infection prevalence

(proportion of individuals infected). Prevalence is only an indirect measure of

amount of disease transmission because infections may persist for varying lengths

of time. Gemperli (2003) reports that a direct transmission measure is the inci-

dence of disease; that is, the number of new cases of disease diagnosed per unit time

and person. Incidence data can be biased when collected in health centers because

it may reflect patients’ access to those facilities. They also depend on accurate es-

timates of the population at risk. A second key measure is the intensity of infection

(worm burden or severity) which is estimated based on quantitative egg counts or

blood smears. The relative ease in collecting prevalence data means that decisions

on where to implement control measures is typically based on whether prevalence

of infection exceeds some species-specific threshold (Magalhes, Clements, Patil,

Gething, & Brooke, 2011). For STH and Schistosomiasis, the goal of treatment is
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morbidity control; mass treatment has been recommended where infection preva-

lence exceeds 20 % among school children (WHO, 2002, 2006). Regardless of

treatment threshold, implementation of helminth control requires evidence-based

maps of infection presence.

WHO recommends mass drug administration (MDA) with praziquantel (for schis-

tosomes) and albendazole or mebendazole (for STH) wherever infection prevalence

exceeds 10 %, and had a target of deworming at least 75 % of school-aged chil-

dren and other high risk groups by 2010 (WHO, 2002). This goal has encouraged

many countries to establish national action plans and programmes for controlling

schistosomes and STH. However, implementation of such programmes requires re-

liable and up-to-date information on epidemiology and infection intensity in order

to (i) guide control to areas in greatest need and (ii) estimate drug requirements

(Brooker et al., 2009).

A number of international initiatives have supported mass school-based treat-

ment for STH infection and Schistosomiasis as a control measure. These include

Deworm the World (www .dewormtheworld .org ) and Children Without

Worms (www .childrenwithoutworms .org ) for STH infection, and Schisto-

somiasis Control Initiative (SCI: www .sci -ntds .org ), initially for Schisto-

somiasis and STH.

1.2.1 Morbidity and mortality

Helminths infections are important causes of morbidity and mortality in many

undeveloped countries (Ezeamama, Friedman, Acosta, & Bellinger, 2005). In

particular, Schistosomiasis and STHs are responsible for extensive morbidity and

mortality in sub-Saharan Africa (SSA) (Hanzel et al., 2003). Among well-described

morbidities associated with helminths infection in children are under-nutrition,

anaemia, and failure to achieve genetic potential for growth (Ezeamama et al.,

2005). Studies of morbidity caused by chronic Schistosomiasis have also confirmed
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a general relationship between infection intensity and high morbidity in children

(WHO, 1993).

Fortunately, much of morbidity associated with infection can be reversed with the

use of effective anthelmintic drug treatments (Brooker et al., 2002, 2009). All

of these parasites can be effectively treated with single dose oral therapies that

are safe, inexpensive and required at periodic intervals. Treatment is typically

implemented through mass chemotherapy whereby entire at-risk population is

treated as part of either school or community-based campaigns.

In May 2001, World Health Assembly (WHA) passed resolution 54.19 endorsing

regular treatment of high-risk groups, particularly school-age children, as the best

means of reducing morbidity and mortality (WHO, 2001b; Hanzel et al., 2003).

Under WHO guidelines, the decision to treat all persons (mass treatment) or

only school children and other high risk groups (selective treatment) depends on

prevalence of infection in a particular region (WHO, 1998b). Both schistosomes

and STH infections tend to be highly aggregated in that a small percentage of

infected persons have very high worm burdens (Hanzel et al., 2003; Vounatsou,

Raso, Tanner, N‘goran, & Utzinger, 2009).

A direct relationship exists between helminths infection intensity and anaemia

(Larocque et al., 2005). Anaemia in pregnancy has been associated with poor

birth outcome, such as low birth weight (Bethony et al., 2006) and increased

maternal morbidity and mortality (Larocque et al., 2005). WHO (1998a) proposed

a classification for intensities for each STH infection (based on quantitative counts

obtained using Kato-Katz method). Especially in Hookworm infection, the degree

of severity of morbidity varies not only according to number of worms present

but also according to determinants of the host (that is, age), parasite (that is,

species), and host-parasite interaction (that is, nutritional intake of iron). Increase

in helminths infection intensity has been reported to significantly contribute to

haemoglobin depletion in infected individuals (Kanzaria et al., 2005)
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However, mortality from helminths has been poorly documented in most endemic

countries, and death certificates and patients’ records rarely identify helminths as

an underlying cause of death. Therefore, there is no doubt that mortality due to

helminths continues to be underestimated, and improved data collection in health

services is needed (WHO, 1993). Even though mortality rate due to helminths is

low (WHO, 1993), most of the people infected are children under 15 years with

problems of faltering growth and/or decreased physical fitness (Kheir, Eltoum,

Saad, Magdi M. Ali, & Homeida, 1999). Little is known about the pattern of

mortality in areas of endemic Schistosomiasis (WHO, 1993). This is a manifesta-

tion of general deficiency in recording rates, causes and distribution of mortality

in endemic countries (Kheir et al., 1999).

1.3 Justification

For an adequate medical, economic and public health appraisal of the importance

of helminths infections, there are many factors to be considered. Among these are

geographical distribution, prevalence, intensity of infection, transmission patterns,

morbidity and mortality, which are influenced by demographic, environmental con-

ditions, relative efficiency of molluscan intermediate hosts, agricultural practices,

and human behavior. Understanding helminths infection burden and its determi-

nants is needed and useful for designing combative interventions.

Of the many measures, prevalence (proportion of individuals infected) is the most

commonly available measure of helminths disease burden. However, infection

severity (worm burden), which is estimated based on quantitative egg counts (in

faecal matter or urine) is very important in understanding medical, public health,

and economic importance of helminths infections. Because of the easiness of data

collection for prevalence, disease control studies mostly consider infection presence

and ignore severity. If anything, those that consider severity or intensity, do it sep-

arately, that is, focusing on counts, ignoring the fact that infection prevalence and
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severity can be driven by similar factors. There is need to come up with methods

to jointly model helminths infection prevalence and severity. In so doing, we may

help to learn risk factors associated with both prevalence and intensity and further

discover important differences between the two outcomes, thus improve design of

interventions. The current study considered a class of zero augmented models

to accommodate excessive zeros in helminths infections. The study analysed not

only the prevalence, but also helminths infection intensity with an emphasis on

demographic, environment and social-economic covariates.

1.4 Study objectives

The study aimed at analysing prevalence and intensity of helminths infections

with examples from Malawi and Zambia.

1.4.1 Specific objectives

The specific objectives of this study are:

1. Derive Zero adjusted models to estimate helminth epidemiology.

2. Assess demographic, environment and socio-economic covariates impacting

on helminths infection prevalence and intensity.

3. Advance appropriate use of zero adjusted models in helminths disease control

programmes.

1.5 Significance of the study

The study looked at helminths infection, emphasizing on factors that influence

both intensity and prevalence. This is useful as it compliments existing knowl-

edge of helminths and also ensures optimal control of infections in a cost-effective
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way. These are important in public health policy making through improvement of

national STH and Schistosomiasis control planning and also assist in designing of

integrated intervention strategies to curb disease burden by:

∙ Predicting patterns of parasite prevalence and intensity for planners to target

areas with highest potential risk.

∙ Allowing planners to determine intervention or combination of interventions

that are cost effective in a particular area.

More importantly, the study contributes to zero adjusted models for count data

applications in helminthology and disease mapping. Schistosomiasis and Hook-

worm infections have been chosen since both are influenced by demographic, envi-

ronmental and socio-economic factors approximated by geographical location and

depict spatial clustering.

1.6 Structure of thesis

The thesis is organised as follows: Chapter two (2) describes generation of helminths

count data, models for count data, zero-altered/zero-inflated model specifications

and their main properties. estimation parameters and model selection criteria.

It also gives an overview of statistical modeling of helminths. Chapter three (3)

outlines details for data, its sources, ethical clearance and methods used for data

analysis. It also describes fitted models, model selection and details for residual

spatial effects analysis. Chapter four (4) presents results and discussion for the

applications. Chapter five (5) outlines main conclusions and recommendations

from the study. A list of references used follows from chapter five (5). Some of R

code snippets that were used in statistical analysis are in appendix A. Finally, a

surrogate residual spatial effects figure follows in appendix B.
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Chapter 2

METHODOLOGY REVIEW

2.1 Introduction

Statistical modeling gives mathematical descriptions of “factor-disease” relations

(that is, demographic, environment and socio-economic factors e.t.c), identifies sig-

nificant predictors of disease transmission and provides predictions of disease risk,

among others. Various statistical models have been developed to model helminths

disease burden. This chapter gives a review of count data and models/assumptions

for count data, an overview of zero adjusted models (zero-inflated and Hurdle) and

their properties, model selection standard, zero adjusted model applications, sta-

tistical methods in helminths modeling and residual spatial effects overview. The

current review focuses on strengths and weaknesses of above-mentioned count data

models and a justification for their adoption and subsequent use in modeling zero

inflated count data.

2.2 Modeling zero inflated data

The encumbrance of helminths infection in a given community can be measured

by either of these two indicators: infection intensity or infection prevalence. In-

fection intensity is a measure of number of eggs per gram of faeces (for STH and

S. mansoni) or eggs per 10 ml of urine (for S. haematobium), and is a key deter-
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minant of transmission dynamics within communities and morbidity risk among

individuals (Brooker et al., 2009). Measuring intensity requires time-consuming,

quantitative laboratory methods and consequently is not routinely assessed in field

surveys. The more easily collected indicator is prevalence of infection: proportion

of sampled individuals who have one or more eggs detected in their stool or urine

sample. In view of relative simplicity of measuring prevalence, WHO recommends

its use to determine the need for control, with mass treatment of whole populations

recommended where prevalence exceeds 10 % (WHO, 2002).

In the above-mentioned infection intensity measures, count data are used; data

in which observations can only take non-negative integer values: 0, 1, 2, ...

(Winkelmann, 2008) and where these integers arise from counting rather than

ranking, following a Poisson distribution. Transmission intensity of human helminths

is a function of parasitic worm load within a group of individuals, which can be

quantified by number of eggs that are excreted. Host heterogeneities in exposure

and susceptibility to infection lead to an aggregated distribution of severity across

individuals (Bradley, 1972). For this reason, a few individuals harbour large num-

bers of parasites whilst majority of individuals are uninfected or only carry a low

parasite burden (Vounatsou et al., 2009). In addition, widely used diagnostic

approaches for Schistosomiasis (that is, Kato-Katz technique for S. mansoni di-

agnosis) fail to detect some infected individuals particularly when only a single

stool sample is examined and infection intensities are light (Utzinger et al., 2001).

Due to these two issues, often a large proportion of individuals are considered as

“zero egg excretors” (Vounatsou et al., 2009).

Poisson regression is traditionally conceived as the basic count model upon which

a variety of other count models are based (Greene, 2005; Hilbe, 2011). Poisson

distribution is characterized as:

𝑓(𝑦;𝜆) =
𝑒−𝜆𝑖(𝜆𝑦𝑖

𝑖 )

𝑦𝑖!
, 𝑦𝑖 = 0, 1, 2, ..., 𝑛𝑖; 𝜆 > 0 (2.1)
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where random variable y is the count response and parameter 𝜆 is the mean.

Often, 𝜆 is also called the rate or intensity parameter referred to as 𝜇 (Hilbe,

2011). Unlike most other distributions, Poisson does not have a distinct scale

parameter. Rather, the scale is assumed equal to 1. Poisson regression model

derives from Poisson distribution. Relationship between 𝜇, 𝛽, and x the fitted

mean of the model, parameters, and model covariates or predictors, respectively

is parameterized such that 𝜇 = exp(x𝛽). Here, x𝛽 is the linear predictor, which

is also symbolized as 𝜂 within the context of generalised linear models (GLM).

Exponentiating x𝛽 guarantees that 𝜇 is positive for all values of 𝜂 and for all

parameter estimates (Hilbe, 2011).

The standard Poisson distribution, which assumes equal variance and mean, is

not appropriate to fit the observed egg counts since variance of the counts is

much larger than their mean. Violations of equidispersion indicate correlation

in the data, which affects standard errors of the parameter estimates. Model

fit is also affected. When such a situation arises, modifications are made to the

Poisson model to account for discrepancies in the goodness of fit of the underlying

distribution. Negative binomial (NB) is normally used to model overdispersed

Poisson data. The NB model is employed as a functional form that relaxes the

equidispersion restriction of the Poisson model (Greene, 2008). NB distribution is

characterized as:

𝑃 (𝑋 = 𝑘) =
Γ(𝛼 + 𝑘)

Γ(𝛼)Γ(𝑘 + 1)

(︁ 1

1 + 𝜃

)︁𝛼(︁ 𝜃

1 + 𝜃

)︁𝑘
𝑘 = 0, 1, 2, ... (2.2)

where random variable X has a NB distribution with parameters 𝛼 ≥ 0 and 𝜃 ≥ 0.

Its mean and variance are given by:

𝐸(𝑋) = 𝛼𝜃 (2.3)

and
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𝑉 𝑎𝑟(𝑋) = 𝛼𝜃(1 + 𝜃) = 𝐸(𝑋)(1 + 𝜃) (2.4)

Since 𝜃 ≥ 0, the variance of NB distribution generally exceeds its mean (“overdis-

persion”) (Winkelmann, 2008). It has since been proposed to model excessive

variation in helminth egg counts (Cohen, 1977). NB regression models have been

widely used to analyse helminths infection intensity data (Ridout, Demetrio, &

Hinde, 1998; Utzinger, Vounatsou, N‘Goran, Tanner, & Booth, 2002; Brooker et

al., 2006). However, distributional problems affect both models (Poisson and NB)

such as overdispersion resulting from specification errors in the systematic part of

the regression model, hence NB models themselves may be overdispersed (Hilbe,

2011). Nevertheless, both models can be extended to accommodate any extra

correlation or dispersion in the data that result in a violation of distributional

properties of each respective distribution. The enhanced Poisson or NB model

can be regarded as a solution to a violation of distributional assumptions of the

primary model (2.1). For a better fit, an overdispersed model that incorporates

excess zeros should serve as an alternative (Famoye & Singh, 2006). Zero-adjusted

mixture models such as Zero-Inflated (ZI) and Hurdle count models are capable

of incorporating excess zeros. They are applied to count data when overdispersion

exists and excess zeros are indicated (Flynn & Francis, 2009; Hilbe, 2011).

2.2.1 Assumption violations and diagnostics

1. No zeros in data

Poisson and NB distributions assume that zero counts are a possibility. When data

to be modeled originate from a generating mechanism that structurally excludes

zero counts, then Poisson or NB distribution must be adjusted to account for the

missing zeros. Such model adjustment is not used when the data can have zero

counts, but simply do not. Rather, an adjustment is made only when the data

must be such that it is not possible to have zero counts. Zero-truncated Poisson
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and zero-truncated NB models are normally used for such situations (Hilbe, 2011).

2. Excess zeros in data

Poisson and NB distributions define an expected number of zero counts for a given

value of the mean. The greater the mean the fewer zero counts are expected. Some

data, however, come with a high percentage of zero counts - far more than are

accounted for by the Poisson or NB distribution. Zero inflated Poisson (ZIP) and

zero inflated negative binomial (ZINB) models handle this problem. Logistic or

probit regression is typically used to model the structural zeros, and Poisson or

negative binomial regression is used for the count outcomes (Hilbe, 2011).

3. Data separable into two or more distributions

When zero counts of a Poisson or NB model do not appear to be generated from

their respective distributions, the model may be separated into two parts; some-

what like the ZIP and ZINB models mentioned above. In this case, hurdle models

are used. However, in case of hurdle models (Poisson logit hurdle (PLH) and Neg-

ative binomial logit hurdle (NBLH)), the assumption is that a threshold must be

crossed from zero counts to actually enter the counting process (Hilbe, 2011).

2.3 Zero adjusted distributions

Zero inflation in count data arises when one mechanism generates only zeros and

the other process generates both zero and non-zero counts, hence they can be

expressed as a two-component mixture model where one component has a degen-

erate distribution at zero and the other is a count model (Cameron & Trivedi,

1998). Zero adjusted models estimate two equations: one for the count model and

another for the excess zeros. Zero inflated count data are common in a number

of applications. Ridout et al. (1998) cite examples of data with too many zeros

from various disciplines including agriculture, econometrics, patent applications,

species abundance, medicine, and use of recreational facilities. Several models
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have been proposed to handle count data with too many zeros than expected. ZI

models include: zero inflated Poisson (ZIP) and zero inflated negative binomial

(ZINB) whereas Hurdle models include: Poisson logit hurdle (PLH) and negative

binomial logit hurdle (NBLH) (Hilbe, 2011). Each of these models consists of an

equation for “participation” and a model for the event count that is conditioned

on the outcome of the first decision (Greene, 2005).

Both the Hurdles and ZI models allow for two sources of overdispersion (Cameron

& Trivedi, 1998). One of these allows for extra (or too few) zeros; the second

allows for overdispersion induced by individual heterogeneity in the positive set.

The Hurdle model can also explain too few zeros (Cameron & Trivedi, 1998).

Zero adjusted models assume that a proportion of individuals have no chance to be

infected, as they are not exposed. In case of helminths infection, there is a process

which determines whether an individual is likely to be infected at all (infection

probability), and a second process determining the number of excreted eggs among

those who are at risk of infection (infection severity).

2.3.1 Zero Inflation (ZI) model

Model Description

A ZI count model is a special case of a finite mixture model that only permits mix-

ing with respect to zeros. The assumption that mixing takes place with respect to

zeros only is relatively more attractive if the population can be realistically divided

into two components (Cameron & Trivedi, 1998). Members of one subpopulation

are “never at risk” and hence never experience a positive number of events. Those

of the second subpopulation are “at risk” and may experience a positive number

of events (Cameron & Trivedi, 1998).

The latent class interpretation of the model suggests a two level decision process:

the regime and the event count. ZIP models assume that the number of excreted
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eggs follows a Poisson distribution. ZINB models assume that the number of eggs

among those who are at risk of infection has a NB distribution (Vounatsou et al.,

2009). Thus ZIP and ZINB models can be viewed as partial observation models

or latent class models of a sort (Greene, 2005). A general distribution assumption

for ZI models is that the number of observations having a value of zero (that is,

no events experienced) on the dependent variable will generally exceed that which

would be expected under the Poisson. The ZI model structure is given as follows:

𝑑*𝑖 = 𝑤
′

𝑖𝛿 + 𝑢𝑖 (2.5)

𝑑𝑖 = 1(𝑑*𝑖 > 0) (2.6)

𝑃𝑟𝑜𝑏(𝑑𝑖 = 0|𝑤𝑖) = Π0(𝑤
′

𝑖𝛿) (regime selection equation) (2.7)

𝑃𝑟𝑜𝑏(𝑑𝑖 = 1|𝑤𝑖) = 1 − Π0(𝑤
′

𝑖𝛿) (regime selection equation) (2.8)

𝑦*𝑖 |𝑋 ∼ 𝑃 (𝑦*𝑖 |𝑋𝑖) (latentPoissonorNBmodel) (2.9)

𝐸[𝑦*𝑖 |𝑋𝑖] = 𝑒𝑥𝑝(𝛼 + 𝑋
′

𝑖𝛽) = 𝜆𝑖 (conditionalmean) (2.10)

𝑦𝑖 = 𝑑𝑖𝑦
*
𝑖 𝑎𝑛𝑑𝑋𝑖 are observed (observationmechanism) (2.11)

From above, 𝑑𝑖 is the participation decision or regime selection (binary variable)

with i = 0 or 1, 𝑦𝑖 is the count outcome variable 0,1,... with i = 1, ..., N. Thus,

if 𝑑𝑖 equals zero, then the observed 𝑦𝑖 equals zero regardless of the latent value of
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𝑦*𝑖 . 𝑤
′
𝑖 is a vector of covariates that appears in the participation equation (that

is, in the regime selection equation) and 𝛿 is the standard deviation of a random

heterogeneity term epsilon. If 𝑑𝑖 equals one, Poisson or NB variable (which might

then still equal zero) is observed (Greene, 2005). A common element throughout

is the assumption that latent effects in the regime equation and the count outcome

are uncorrelated.

Below are model specifications of ZI models adapted from Loeys, Moerkerke, Smet,

and Buysse (2011) that have been used to analyse application data in the current

study.

1. Zero Inflated Poisson (ZIP)

In ZIP regression, the counts 𝑌𝑖 equal 0 with probability 𝑝𝑖 and follow a Poisson

distribution with mean 𝜇𝑖 with probability 1 - 𝑝𝑖. ZIP model can thus be seen as

a mixture of two component distributions:

𝑃𝑟(𝑌𝑖 = 0) = 𝑝𝑖 + (1 − 𝑝𝑖)𝑒𝑥𝑝(−𝜇𝑖) (2.12)

𝑃𝑟(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖)𝑒𝑥𝑝(−𝜇𝑖) − 𝜇𝑘
𝑖 /𝑘!, 𝑘 = 1, 2, 3, ... (2.13)

From (2.12), zero observations arise from both zero-component distribution and

Poisson distribution. The zero-component distribution is therefore related to mod-

eling ‘excess’ or ‘inflated’ zeros that are observed in addition to zeros that are

expected to be observed under the assumed Poisson distribution. To assess im-

pact of covariates on the count distribution in a ZIP model, 𝑝𝑖 and 𝜇𝑖 can be

explicitly expressed as a function of covariates. The most natural choice to model

probability of excess zeros is to use a logistic regression model:

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑥𝑇
𝑖 𝛽 (2.14)
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where 𝑥𝑖 represents a vector of covariates and 𝛽 a vector of parameters. Impact of

covariates on count data excluding excess zeros can be modeled through Poisson

regression:

𝑙𝑜𝑔(𝜇𝑖) = 𝑥𝑇
𝑖 𝛾 (2.15)

Mean and variance of ZIP model are:

𝐸(𝑦𝑖|𝑥𝑖, 𝑧𝑖) = 𝜇𝑖(1 − 𝑝𝑖) (2.16)

𝑉 (𝑦𝑖|𝑥𝑖, 𝑧𝑖) = 𝜇𝑖(1 − 𝑝𝑖)(1 + 𝜇𝑖𝑝𝑖) (2.17)

2. Zero Inflated Negative Binomial (ZINB)

Count data often exhibit more variability than predicted by the mean of a Poisson

distribution, even after accounting for excess zeros. A way of modeling over-

dispersed zero-inflated count data is to assume a Zero-Inflated Negative Binomial

(ZINB) distribution for 𝑌𝑖:

𝑃𝑟(𝑌𝑖 = 0) = 𝑝𝑖 + (1 − 𝑝𝑖)
𝜃𝜃

(𝜇𝑖 + 𝜃)𝜃
(2.18)

𝑃𝑟(𝑌𝑖 = 𝑘) = (1 − 𝑝𝑖)
Γ(𝑘 + 𝜃)

Γ(𝜃)𝑘!
× 𝜇𝑘

𝑖 𝜃
𝜃

(𝜇𝑖 + 𝜃)𝑘+𝜃
, 𝑘 = 1, 2, 3, ... (2.19)

with mean 𝜇𝑖 and shape parameter 𝜃; Γ is the gamma function. The mean and

variance of ZINB model are:

𝐸(𝑦𝑖|𝑥𝑖, 𝑧𝑖) = 𝜇𝑖(1 − 𝑝𝑖) (2.20)

20



𝑉 (𝑦𝑖|𝑥𝑖, 𝑧𝑖) = 𝜇𝑖(1 − 𝑝𝑖)(1 + 𝜇𝑖(𝑝𝑖 + 𝛼)) (2.21)

From the means and variances of ZIP and ZINB, it is noted that they both display

over-dispersion such that 𝑉 (𝑦𝑖|𝑥𝑖, 𝑧𝑖) > 𝐸(𝑦𝑖|𝑥𝑖, 𝑧𝑖).

2.3.2 Hurdle model

Model description

The hurdle model is also a two part decision model similar to ZI model described

above. The first part is a participation equation and second part is an event

count, conditioned on participation (Greene, 2005). Hurdle models are based on

an assumption that zero counts are generated from a different process than are

positive counts in a given data situation. A Hurdle model partitions the model

into two parts: a binary process generating positive counts (1) versus zero counts

(0); and a process generating only positive counts (Hilbe, 2011). The binary

process is generally estimated using a binary model; the positive count process

is estimated using a zero-truncated count model. The binary process can also

be estimated using a ‘right censored at one’ count model: Poisson, geometric, or

negative binomial. Censoring takes place at a count value of one such that, for

example, a Poisson count of zero is given the binary process value of zero and

counts of one or greater are given the value of one (1) (Hilbe, 2011).

The above described partitioning permits the interpretation that positive observa-

tions arise from crossing a zero hurdle or zero threshold. In principle, the threshold

need not be at zero; it could be any value. Furthermore, it need not be treated as

known. The zero value has special appeal because in many situations it partitions

the population into sub-populations in a meaningful way (Cameron & Trivedi,

1998). In contrast to ZI model, zero and non-zero counts are separated in hurdle

models (Loeys et al., 2011) which makes them very useful in inferential studies.
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Formally, the model can be constructed as follows:

𝑑*𝑖 = 𝑤
′

𝑖𝛿 + 𝑢𝑖 (2.22)

𝑑𝑖 = 1(𝑑*𝑖 > 0) (2.23)

𝑃𝑟𝑜𝑏(𝑑𝑖 = 0|𝑤𝑖) = Π0(𝑤
′

𝑖𝛿) (hurdle equation) (2.24)

𝑃𝑟𝑜𝑏(𝑑𝑖 = 1|𝑤𝑖) = Φ(𝑤
′

𝑖𝛿) (probit hurdlemodel) (2.25)

𝑦𝑖|𝑋𝑖, (𝑑𝑖 = 0) = unobserved (non− participation) (2.26)

𝑦𝑖|𝑋𝑖, (𝑑𝑖 = 1) ∼ 𝑃+(𝑦𝑖|𝑋𝑖) (truncatedPoissonorNBmodel givenparticipation).

(2.27)

An interpretation in this model is that the zero outcome is governed by a separate

process; the zero outcome is a decision not to participate. The central feature of

the model is the effect of hurdle decision on event count equation, which is denoted

𝑃 + (𝑦𝑖|𝑥𝑖). If 𝑑𝑖 = 1, then by construction, 𝑦𝑖 > 0. Thus, the resulting count

model has truncated form (Greene, 2005). The underlying motivation is similar

to the latent class interpretation in the ZI model above.

Below are model specifications of Hurdle models adapted from Loeys et al. (2011)

that have been used to analyse application data in the current study.

1. Poisson Logit Hurdle (PLH)

Like the ZIP model, PLH model is a two-component model: a hurdle component

22



models zero versus non-zero counts, and a truncated Poisson count component is

employed for the non-zero counts:

𝑃𝑟(𝑌𝑖 = 0) = 𝑝*𝑖 (2.28)

𝑃𝑟(𝑌𝑖 = 𝑘) = (1 − 𝑝*𝑖 )
𝑒𝑥𝑝(−𝜇*

𝑖 )(𝜇
*
𝑖 )

𝑘/𝐾!

1 − 𝑒𝑥𝑝(−𝜇*
𝑖 )

, 𝑘 = 1, 2, 3, .... (2.29)

𝑝𝑖 models all zeros. For PLH model, the most natural choice to model probability

of zeros is to use a logistic regression model:

logit(𝑝*𝑖 ) = 𝑥𝑇
𝑖 𝛽

* (2.30)

while impact of covariates 𝑥𝑖 on strictly positive (that is, censored) count data are

modeled through Poisson regression:

logit(𝜇*
𝑖 ) = 𝑥𝑇

𝑖 𝛾
* (2.31)

2. Negative Binomial Logit Hurdle (NBLH)

Similarly, for the hurdle models, the NBLH can be used instead of Poisson distri-

bution above in case of over-dispersion:

𝑃𝑟(𝑌𝑖 = 0) = 𝑃 *
𝑖 (2.32)

𝑃𝑟(𝑌𝑖 = 𝑘) = (1 − 𝑝*𝑖 )
Γ(𝑘 + 𝜃)

Γ(𝜃)𝑘!
× (𝜇*

𝑖 )
𝑘𝜃𝜃

(𝜇*
𝑖 + 𝜃)𝑘+𝜃

× 1

1 − 𝜃𝜃/(𝜇*
𝑖 + 𝜃)𝜃

, (2.33)

where k = 1, 2, 3, ...

The most natural choice to model probability of excess zeros is to use a logistic
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regression model:

𝑙𝑜𝑔𝑖𝑡(𝑝*𝑖 ) = 𝑥𝑇
𝑖 𝛽

* (2.34)

Impact of covariates on count data modeled through Poisson regression:

𝑙𝑜𝑔(𝜇𝑖) = 𝑥𝑇
𝑖 𝛾 (2.35)

The expected value and the corresponding variance are given by:

E(𝑦𝑖 | 𝑍𝑖, 𝑋𝑖, 𝑦𝑖 > 0) =
∞∑︁

𝑦𝑖=1

𝑦𝑖𝑓2(𝑦𝑖)𝜃𝑖 (2.36)

V(𝑦𝑖 | 𝑍𝑖, 𝑋𝑖, 𝑦𝑖 > 0) = 𝜃𝑖

∞∑︁
𝑦𝑖=1

𝑦2𝑖 𝑓2(𝑦𝑖) − 𝜃2𝑖

[︁ ∞∑︁
𝑦𝑖=1

𝑦𝑖𝑓2(𝑦𝑖)
]︁2

(2.37)

2.4 Parameter Estimation for Zero-inflation and

Hurdle models

To implement the Zero inflated (equations 2.7 and 2.8) and Hurdle models (equa-

tions 2.24 and 2.25 ), the following indicator variables can be created: 𝜔1 and 𝜔2

where 𝜔1 equals 1 when observed count is zero and zero elsewhere; while 𝜔2 equals

1 when observed counts are ≥ 1 and zero elsewhere. The use of these indicators

ensures that the maximization of the log-likelihood functions are uniform across

the entire sample (Lawal, 2010) . The indicator variables are defined as:

𝜔1 =

{︃
1 if 𝑦𝑖 = 0

0 elsewhere
(2.38)

𝜔2 =

{︃
0 if 𝑦𝑖 = 0

1 elsewhere
(2.39)
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Consequently, the log-likelihood functions for a given observation 𝑦𝑖 are estimated

as follows for the zero inflation models (for ZIP model, see equation 2.40, ZINB

model, see equation 2.41 and for NBLH model, see equation 2.43 ):

L = (𝜔1 × [𝑙𝑜𝑔(𝜑 + (1 − 𝜑)𝑒𝑥𝑝(−𝜇𝑖))]

+ 𝜔2 × [𝑙𝑜𝑔(1 − 𝜑) + 𝑦𝑖𝑙𝑜𝑔(𝜇𝑖) − 𝑙𝑜𝑔(𝑦𝑖!) − 𝜇𝑖])
(2.40)

L =
(︁
𝜔1 × [𝑙𝑜𝑔(𝜑 + (1 − 𝜑)(1 + 𝑘𝜇𝑖)

−𝑘−1

)]

+ 𝜔2 × [𝑙𝑜𝑔(1 − 𝜑) + 𝑦𝑖𝑙𝑜𝑔𝜇𝑖 + 𝑦𝑖𝑙𝑜𝑔𝑘 − 𝑙𝑜𝑔𝑦𝑖!

−(𝑦𝑖 + 𝑘−1)𝑙𝑜𝑔(1 + 𝑘𝜇𝑖) + 𝑙𝑜𝑔Γ(𝑦𝑖 + 𝑘−1) − 𝑙𝑜𝑔Γ(𝑘−1)]
)︀ (2.41)

The likelihood function for Hurdle models is given as:

L =
∏︁
𝑦𝑖=0

𝑓1(0)
∏︁
𝑦𝑖>0

[︁
1 − 𝑓1(0)

]︁ ∏︁
𝑦𝑖>0

[︃
𝑓2(𝑦𝑖)

[1 − 𝑓2(0)]

]︃
(2.42)

and its corresponding log-likelihood function is:

Ln L =
∑︁
𝑖

1(𝑦𝑖 = 0)𝑙𝑛
[︁
𝑃1(𝑦𝑖 = 0 | 𝑍𝑖, 𝑋𝑖)

]︁
+
(︁

1 − 1(𝑦𝑖 = 0)
)︁
𝑙𝑛
[︁
1 − 𝑃1(𝑦𝑖 = 0 | 𝑍𝑖, 𝑋𝑖)

]︁
(2.43)

+
∑︁[︁

(1 − 1(𝑦𝑖 = 0))𝑙𝑛
[︁
𝑃 (𝑦𝑖 = 𝑗 | 𝑍𝑖, 𝑋𝑖)

]︁]︁
Where 𝐿1 can be regarded as a log-likelihood function for the binary (zero/positive)

outcome, e.g., logit model and 𝐿2 as a log-likelihood function for a truncated-at-

zero (positive number of helminth parasites). The first hurdle follows the decision

in which an individual does or does not have helminths parasites in the underly-

ing binary probability distribution, logit. The second hurdle truncates non-zero

counts in the underlying negative binomial distribution. Thus, MLEs of 𝛽1 and
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𝛽2 can be obtained separately from 𝐿1 and 𝐿2. Poisson model is obtained when

the overdispersion parameter alpha, 𝛼2, equals to zero. For computational sim-

plicity, we use 𝛼1 = 1, which corresponds to using logit model at first stage in the

double-hurdle negative binomial count data model.

While both ZI and hurdle models need distributional assumptions for their count

component, both classes differ with respect to their dependencies of estimation of

parameters of “zero” component on these assumptions (Loeys et al., 2011). Unlike

ZI model, estimation of parameters 𝛽* related to 𝑝*𝑖 in the hurdle model is not

dependent on estimation of parameters 𝛾* related to 𝜇*
𝑖 . Hence, if assumptions

about the (truncated) Poisson/negative binomial model are violated (for example

due to extreme outlying observations), the hurdle model will, in contrast to ZI

model, still yield consistent estimators for parameters in the logit part of the

model (if correctly specified) (Loeys et al., 2011).

2.5 Zero adjusted models’ applications

Lambert (1992) described Zero-Inflated Poisson (ZIP) regression models with an

application to defects in manufacturing. Hall (2000) described Zero-Inflated Bi-

nomial (ZIB) regression model and incorporated random effects into ZIP and ZIB

models. Cragg (1971) developed the idea for a hurdle model - a modified count

model in which the processes generating zeros and positives are not constrained

to be the same.

Ridout et al. (1998) considered various ZIP regression models for an Apple shoot

propagation data. They concluded that ZIP models were inadequate for the data

as there was still evidence of over dispersion. The first application of a ZINB

model within a model based geostatistics (MBG) framework for S. mansoni in-

fection was applied in Cote d‘Ivoire (Vounatsou et al., 2009). This study showed

that geostatistical ZI models produce more accurate maps of helminths infection
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intensity than their spatial NB counterparts. Gurmu and Trivedi (1996) found

out that Negative Binomial Hurdle model (NBLH), which allows for overdisper-

sion and also accommodates presence of excess zeros, was more appropriate among

all zero-adjusted models they considered. Recent applications have suggested that

hurdle model is more plausible and, at the same time, a more manageable specifica-

tion for explaining the preponderance of zeros that one typically finds in observed

data (Greene, 2005).

A Bayesian analysis of ZIP models is given in Rodrigues (2003) and of ZINB

models in Denwood et al. (2008). Zeileis, Kleiber, and Jackman (2008) compared

generalised linear models (GLM) : Poisson and NB and zero adjusted models :

Hurdle and ZI. From these, NBLH model presented a better fit to count data

with overdispersion and excess zeros. Loeys et al. (2011) distinguished between

zero-inflated models and hurdle models. They concluded that the choice between

Hurdle and Zero-inflated models should be based on the aim and endpoints of the

study. If the goal is prediction, it is not important which modeling framework is

used, because predictions are (almost) identical. However, if the goal is inference,

model choice is related to the study goal. From literature and empirical evidence

available, Hurdle models (such as NBLH) therefore are more appropriate for mod-

eling zero inflated count data as they allow for overdispersion and accomodate

excess zeros.

2.6 Model selection

For comparison of non-nested models based on maximum likelihood to choose the

best fitting model, Akaike’s information criterion (AIC) has been proposed for

model selection criteria based on the fitted log-likelihood function (Akaike, 1973;

Cameron & Trivedi, 1998; Pan, 2001). A model with lowest AIC is preferred

(Akaike, 1973). Several modifications of AIC also exist, viz Bayesian information

criteria (BIC) and Consistent Akaike’s information criterion (CAIC) (Cameron
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& Trivedi, 1998). AIC is asymptotically optimal in selecting the model with the

least mean squared error while BIC is not asymptotically optimal (Burnham &

Anderson, 2004).

As a measure of the relative goodness of fit of a statistical model, AIC not only

rewards goodness of fit, but also includes a penalty that is an increasing function

of the number of estimated parameters. Since the log-likelihood is expected to

increase as parameters are added to a model, the AIC criteria penalize models

with larger k, the number of parameters in the model. This penalty function may

also be a function of n, the number of observations (Cameron & Trivedi, 1998).

This penalty discourages over-fitting. The AIC is specified as:

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(L) + 2𝑘 (2.44)

where L is the maximized value of the likelihood function for the estimated model

and 2𝑘 is the variance, with 𝑘 being equal to number of parameters in the model.

Bayesian information criterion is given as:

𝐵𝐼𝐶 = −2𝑙𝑜𝑔(L) + (𝑙𝑜𝑔(n))k (2.45)

Consistent Akaike information criterion is given as:

𝐶𝐴𝐼𝐶 = −2𝑙𝑜𝑔(L) + (1 + 𝑙𝑜𝑔(n))k (2.46)

Similar to AIC model (equation 2.44), k is the number of parameters in equations

2.45 and 2.46, whereas n is the number of observations.
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2.7 Statistical methods in helminths modeling

Much work has been done on distribution and prevalence of Schistosomiasis and

Hookworm infections. However mapping of disease distribution is complicated

by limitations of available data. Most widely available data are from preva-

lence surveys (Gemperli, 2003). However, these surveys are generally carried out

at arbitrary locations and include non-standardized and overlapping age groups

(Gemperli, Vounatsou, Sogoba, & Smith, 2006). To augment approaches to rapid

mapping and also address absence of suitable data in many settings, spatial pre-

diction methods based on statistical relationships between individual and environ-

mental predictors and infection risk, are increasingly being used (Magalhes et al.,

2011).

Several methods have been used to estimate prevalence and distribution of Hook-

worm, Schistosomiasis and other tropical diseases rather than infection intensity,

although the latter is particularly important for morbidity control. Most recently,

predictive approaches to disease mapping have employed Bayesian model-based

geostatistics (MBG) which embeds classical geostatistics in a GLM framework

(Magalhes et al., 2011).

Raso et al. (2006) and Brooker et al. (2009) implemented multinomial spatial mod-

els for predicting risk of co-infection with multiple parasitic worms (helminths).

Such models depend on observed co-infection data arising from a single survey

on the same individuals. However, there is lack of these types of data since most

surveys consider single infections.

In Man region, Cote d‘Ivoire, the ability of models to capture co-infection risk was

assessed on simulated data sets based on multinomial distributions assuming light-

and heavy-dependent diseases, and a real dataset of S. mansoni -Hookworm co-

infection (Schur, Gosoniu, Raso, Utzinger, & Vounatsou, 2011). In Mali, Niger and

Burkina Faso, Clements et al. (2010) used a multinomial formulation to identify
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areas with highest prevalence of high-intensity of S. haematobium infection and

estimated the number of school-age children with high and low intensity infections.

Multinomial approach is the most straightforward and involves predicting preva-

lence of low and moderate/heavy intensity infections which can be useful tools

for estimating burden of helminth diseases (Clements et al., 2010). However, the

main limitation of this approach is that it involves stratifying egg counts, leading

to a loss of information, whereas the NB-based approaches make full use of inten-

sity data on a continuous scale (Magalhes et al., 2011). Therefore, an alternative

approach is to model individual level egg counts.

Vounatsou et al. (2009) reported the first application of a ZINB model within an

MBG framework for S. mansoni infection in Cote d‘Ivoire to map Schistosomiasis

transmission and predict infection intensity. This study showed that geostatistical

zero-inflated models produce more accurate maps of helminths infection intensity

than their spatial NB counterparts.

2.8 Residual spatial effects

In geostatistical studies, residual spatial effects have been investigated to check

whether there are spatial patterns (spatial dependence). The variogram technique

(Cressie, 1993) is used. In spatial statistics the theoretical variogram 2𝛾(x,y) is

a function describing the degree of spatial dependence of a spatial random field

or stochastic process Z(x). It is defined as variance of the difference between field

values at two locations across realizations of the field (Cressie, 1993):

2𝛾(𝑥, 𝑦) = 𝑣𝑎𝑟(𝑍(𝑥) − 𝑍(𝑦)) = 𝐸(|(𝑍(𝑥) − 𝜇(𝑥)) − (𝑍(𝑦) − 𝜇(𝑦))|2) (2.47)

For a spatial random field with constant mean 𝜇, the expectation reduces to

equation 2.48 below where 𝛾(𝑥, 𝑦) itself is called the semivariogram:
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2𝛾(𝑥, 𝑦) = 𝐸(|(𝑍(𝑥) − (𝑍(𝑦)|2) (2.48)

The empirical variogram is used in geostatistics as a first estimate of the (theo-

retical) variogram needed for spatial interpolation by kriging (Cressie, 1993). For

observations 𝑍𝑖, i = 1,...,k at locations 𝑥1,...,𝑥𝑘 the empirical variogram 𝛾(h) is

defined as equation (2.49). In this equation, N(h) denotes the set of pairs of ob-

servations i,j such that |𝑥𝑖 - 𝑥𝑗| = h, and |N(h)| is the number of pairs in the

set. Generally an “approximate distance” h is used, implemented using a certain

tolerance (Cressie, 1993).

𝛾(ℎ) :=
1

|𝑁(ℎ)|
∑︁

(𝑖,𝑗)∈𝑁(ℎ)

|𝑍𝑖 − 𝑍𝑗|2 (2.49)

As an empirical variogram cannot be computed at every lag distance h, and due

to variation in the estimation, it is not ensured that it is a valid variogram, as

defined above. However, some geostatistical methods such as kriging need valid

semivariograms. In applied geostatistics, empirical variograms are thus often ap-

proximated by model function ensuring validity (Cressie, 1993). Some of the

common variogram models from the empirical variogram include exponential and

spherical models, these are respectively given by:

𝛾(ℎ) = (𝑠− 𝑛)(1 − 𝑒𝑥𝑝(−ℎ/(𝑟𝑎))) + 𝑛10,∞(ℎ) (2.50)

𝛾(ℎ) = (𝑠− 𝑛)

(︃(︃
3ℎ

2𝑟
− ℎ3

2𝑟3

)︃
10,𝑟(ℎ) + 1𝑟,∞(ℎ)

)︃
(2.51)

Bohling (2005) reports the following characteristics for variograms:

∙ Nugget - the height of jump of the semivariogram at the discontinuity of

the origin.
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∙ Sill - the limit of the variogram tending to infinity lag distances.

∙ Range - the distance in which the difference of the variogram from sill

becomes negligible. Autocorrelation is essentially zero beyond the range.

For the study region’s shapefile, all sampled villages had geo-coordinates deter-

mined by a portable Geographical Positioning System (GPS- Garmin eTrex R○)

machine.

In summary, the chapter has given an overview of zero inflated data generation

and a review of basic methods of analysis with their properties/limitations. It

also gives a review of zero inflated and altered methods for handling zero inflated

count data and also methods for analysing residual spatial effects. The chapter

has also introduced model selection techniques. The above reviewed methods have

been used in analysing data for the current study in the applications section that

follows.
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Chapter 3

APPLICATIONS

3.1 Introduction

The need to update existing models in the context of renewed efforts to address

disease burden in different ecological settings using different interventions, calls

for new and updated models. With respect to this, various statistical models and

methods have been developed to model helminths disease burden. For purposes

of this study, selected zero adjusted models as covered in chapter two (2) have

been applied to analyse count data with excess zeros to predict helminths infec-

tion intensity and prevalence in Chikhwawa district, Malawi and Lusaka province,

Zambia. The two datasets were used in order to validate/fortify the method that

offered a better fit to data. The methods used are Maximum Likelihood Esti-

mation (MLE) based. This chapter gives a description of data, data sources and

ethical clearance, the models fitted and model fitting, model comparison and se-

lection criteria and residual spatial effects analysis.

3.2 Data sources

Two data sets were used in the analysis of zero inflated and altered data on

human helminths. The first data set came from data collected in 2004 in a cluster

randomised study that was conducted in Chikhwawa district in the Lower Shire
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Valley - southern Malawi. This is a rural area whose population is mainly engaged

in subsistence farming. This area lies between 100 and 300m above sea level. The

rainy season extends from December to March. Temperatures can rise up to 50 ∘C

in months preceding rainy season. Malaria is known to be holoendemic (Verhoeff,

2000).

Data were collected in eighteen villages, purposively selected from control and

intervention arms of a cluster randomized study design. Ten percent of the house-

holds were randomly selected from the villages for baseline survey using random

number tables (Ngwira, 2005). Further details are provided in Ngwira (2005).

Briefly, in three of these villages, a survey mapping distribution of lymphatic fi-

lariasis had recently been completed. Four of these villages were taking part in

malaria related entomological studies aimed at mapping genetic diversity of Plas-

modium falciprum as well as a parallel lymphatic filariasis vector incrimination

studies.

A two-stage sample selection was used. In the first stage, villages were selected,

then at second stage, sample of households was listed and chosen. In the selected

households all members aged one year and above were invited to participate. Con-

senting individuals had their demographic details completed and were given a full

body clinical examinations (except genitals for females) for chronic manifestations

of human helminths. In addition, they had anthropometric measurements taken

and were asked to provide a single fresh stool and urine sample. All individuals

(aged >1 year) were requested to provide a finger prick blood sample (Ngwira,

2005).

Fresh stool samples were transported in a cooler box to the laboratory and pro-

cessed within four hours of collection. A single Kato-Katz thick smear was pre-

pared from each sample and immediately examined under a light microscope for

parasite eggs. Standardized and quality controlled procedures were followed .

Briefly 41.7 mg of sieved stool was placed on a microscope slide through a punched
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plastic template. Ova for each parasite observed were counted and expressed as

eggs per gram (epg) of stool. Five percent of the slides were randomly selected for

re-examination for quality control purposes (Ngwira, 2005).

Urine samples were processed on the day of collection. A measured volume (maxi-

mum 10 ml) was centrifuged at 300 revolutions per minute (RPM) for five minutes.

The sediment was then examined under a light microscope. Number of eggs seen

was counted and infection intensity per 10 ml of urine accordingly determined.

All those infected were treated with praziquantel at 40 mg/kg (Ngwira, 2005).

The second data set came from data collected in a cross sectional study that was

carried out in Lusaka province of Kafue and Luangwa districts, Zambia in 2004.

The two districts were selected on the basis of their ecological representativeness

of the country in general. In each of these districts 10 primary schools were

selected. Approximately 100 school children, aged 6 to 15 years, were recruited

from every school. The altitude and geographical location (longitude, latitude) of

the surveyed schools were obtained from the archives of the Survey Department

(2003). Further details of the study design are given elsewhere in Simoonga et al.

(2008).

Briefly, data on S. haematobium prevalence and intensity were obtained using a

Quantitative Filtration technique (Mott, 1984) to process duplicate urine samples

collected about mid-morning. Two laboratory technicians were trained to prepare

and read specimen filters. Both technicians read each specimen independently.

This was useful in increasing sensitivity of the technique, particularly where egg

intensity was low. All pupils found infected were treated with praziquantel (40

mg/kg body weight). Individual data sheets were used to collect ancillary infor-

mation on each child examined.

In addition, data on intermediate host snails were also obtained through field col-

lections and laboratory-based species identification. Sampling of potential Schisto-

somiasis transmission sites was done based on water body proximity to respective
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primary school, that is, the nearest likely infection source. These water points

were also qualified by relevant local people as the most frequented water contact

points for both domestic and/or livestock. Climatic data were downloaded in 1-

km image files from the website http://edcdaac.usgs.gov/1km-homepage.html.

These images were captured by the Advanced Very High Resolution Radiometer

(AVHRR) on board National Oceanic and Atmospheric Administration (NOAA)

polar-orbiting meteorological satellites. They were then calibrated into Normal-

ized Difference Vegetation Index (NDVI) and mid-day earth surface temperature

(𝑇𝑚𝑎𝑥) values using the ERDAS Imagine 8.5 (ERDAS, Atlanta, GA) software for

each decadal (10-day) interval between April 1992 - September 1993 and February

1995-January 1996 (Simoonga et al., 2008).

3.3 Ethical approval

The study that collected data from Malawi received ethical clearance from Malawi

College of Medicine Research Ethics Committee (COMREC) and the Ethics Com-

mittee of London School of Hygiene and Tropical Medicine (LSHTM) (Ngwira,

2005). Individual consent was obtained from each participant or (if they were

aged <16) from one of their parents or guardian. Ethical approval for a study

that collected data on urinary Schistosomiasis in school children in Zambia re-

ceived ethical clearance from University of Zambia Ethics Committee (Simoonga

et al., 2008).

3.4 Analysis

3.4.1 Descriptives analysis

Data were entered into STATA 11.2 Inter Cooled (IC) Edition, StataCorp which

was also used to carry out exploratory data analysis and come up with descriptive

statistics for summarizing and information presentation.
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Descriptive data analysis that is, histograms/graphs and table summaries were

done to present individual and group effects on the count outcomes. For categorical

variables, proportions were generated as summaries whereas means and standard

deviations were generated for continuous variables. P-values were generated for

each of the variables to show whether it was significant or not. Polyparasitism

analysis was performed for males and females and also for different age groups.

3.4.2 Statistical modeling

In order to see how well zero adjusted methods described in chapter two (2) fitted

and captured the observed helminths count data, six models were fitted with main

effects for predictor variables. They were assessed and compared for best fit to

data. These are briefly described below:

∙ Poisson model (P) as the benchmark model for count data.

∙ Negative Binomial Model (NB), a model derived from a Poisson -

gamma mixture distribution. Its the standard parametric model to account

for overdispersion in Poisson distributions.

∙ Zero-Inflated Poisson model (ZIP), a mixture model in which the com-

plete distribution of the outcome is represented by two separate components,

a first part modeling the probability of excess zeros and a second part ac-

counting for the non excess zeros and non-zero counts. It assumes a Poisson

distribution.

∙ Zero-Inflated Negative Binomial model (ZINB), similar to a ZIP

model above but assuming a Negative binomial distribution.

∙ Poisson Logit Hurdle model (PLH), a two part model assuming Poisson

distribution. The first part is a binary outcome model, and the second part

is a truncated count model. Such a partition permits the interpretation
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that positive observations arise from crossing the zero hurdle or the zero

threshold.

∙ Negative Binomial Logit Hurdle model (NBLH), a two part model

similar to PLH model above but assuming a Negative binomial distribution.

3.5 Model fitting

Statistical model fitting and likelihood ratio test (LRT) to compare the models’

fit to data were carried out in R version 2.14.0 (The R Foundation for Statistical

Computing).

R’s Political Science Computational Laboratory (PSCL) package developed to

fit maximum likelihood estimation of ZI and Hurdle models for count data and

goodness-of-fit measures for GLMs among others, was used. The PSCL package

has several model-fitting functions and the one used in this analysis, for the Hurdle

models is called Hurdle ( ). The function fits hurdle regression models for count

data via maximum likelihood, which accepts as main arguments “a formula for

regression fit” and a “character specification of the zero hurdle model family that

is, NB or Poisson”. Another function called zeroinfl ( ) from the same package

was used to fit ZI models. Both the fitting function interface and the returned

model objects of class zeroinfl ( ) are almost identical to the corresponding Hurdle

( ) functionality and again modeled after the corresponding GLM functionality in

R.

3.6 Model assessment

Model assessment and subsequent selection are important aspects in practical

modeling. Choice between nested models (e.g., P versus NB) was made using a

LRT. For a choice between non-nested mixture models (e.g., NBLH versus ZINB),

38



Akaike’s Information Criterion (AIC) (Akaike, 1973) was employed, preferring

the model with smallest AIC value. However, it turns out that in practice there

is no or little difference in AIC between Hurdle model and Zero-Inflated model

(Cameron & Trivedi, 1998). For a single binary predictor, ZINB model can be

seen as reparametrization of NBLH model, and vice versa (Loeys et al., 2011).

Models’ ability to capture zero counts (Zeileis et al., 2008) was also assessed and

compared among the models that offered a best fit to data based on AIC value.

3.7 Residual spatial effects

Distribution of residuals across the area was analysed to see if there were any

spatial patterns in data from Chikhwawa, Malawi. This lead to subsequent map-

ping of residual spatial effects. From the empirical variogram, two models were

suggested and subsequently fitted, viz exponential and spherical, as described in

Chapter two (2) have been applied in the current residual spatial analysis.

For exponential variogram (see model 2.50), the nugget = 0.12, nugget is the height

of jump of the semivariogram at the discontinuity of the origin. The sill = 0.20,

it is the limit of the variogram tending to infinity lag distances. The range = 12,

the distance in which the difference of the variogram from sill becomes negligible.

For spherical variogram (see model 2.51), the nugget = 0.1, the sill = 0.20 and

the range = 12. For residual spatial effects analysis, geoR package in R (Ribeiro

& Diggle, 2011) was used to implement variogram analysis and kriging.
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Chapter 4

RESULTS AND DISCUSSION

In this chapter, study results are presented in form of tables, graphs and figures

for descriptive statistics and tables for statistical modeling. In each of the two

applications, the first part gives exploratory results of data analysis and the second

part gives results for statistical modeling. This chapter also gives a discussion of

findings on each of the applications.

4.1 Results of analysis for Helminths infection

prevalence and intensity in Chikhwawa, Malawi

4.1.1 Descriptive statistics results

Characteristics for study participants are summarized in Table 4.1. In total, 1642

individuals participated. There was a female excess (55.4 %) amongst study par-

ticipants (more marked amongst those aged ≥ 11, see Figure 4.1). Of the total

study population, 22.9 % had Hookworm, 5.0 % had S. Mansoni and 19.4 % had

S. haematobium. Study participants had a mean age of 32.4 with a standard devi-

ation of 22.79. Age and sex distribution of study participants is shown in Figure

4.1.
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Table 4.1: Characteristics for individuals who had S. haematobium, S. Mansoni and Hookworm (N = 1642)

S. haematobium S. Mansoni Hookworm
233 (19.4 %) 71 (5.0 %) 324 (22.9 %)

Variable Mean (Std. Dev) Number(%) t 𝜒2 (P-value) 𝜒2 (P-value) 𝜒2 (P-value)

Age (years) 32.36 (22.79) 47.73 (<0.001) (<0.001) (<0.001)
Sex

Male 733 (44.6) 0.85 (0.358) 3.25 (0.073) 0.56 (0.454)
Female 909 (55.4)

Education
None 745 (45.4) 0.96 (0.618) 1.03 (0.599) 2.92 (0.233)
Primary 850 (51.8)
Secondary 47 (2.9)

Treatment arm
Control 811 (49.4) 13.09 (<0.001) 3.27 (0.071) 10.89 (<0.001)
Intervention 831 (50.6)

Fishing
No 221 (13.5) 14.76 (<0.001) 0.17 (0.681) 22.89 (<0.001)
Yes 1,421 (86.5)

Garden
No 682 (41.5) 26.33 (<0.001) 11.02 (<0.001) 9.12 (0.003)
Yes 960 (58.5)

Occupation
Other 909 (55.4) 1.85 (0.174) 1.23 (0.268) 83.23 (<0.001)
Farmer 733 (44.6)

Polyparasitism
None 807 (49.2) 326.31 (<0.001) 289.92 (<0.001) 463.68 (<0.001)
One 594 (36.2)
Two 200 (12.2)
Three 38 (2.3)
Four 3 ( 0.2)

Deworm
No 1,220 (74.3) 2.69 ( 0.100) 0.004 (0.948) 8.77 (0.003)
Yes 422 (25.7)
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Figure 4.1: Age-gender distribution

From Table 4.1, age showed to be significant across all the outcomes, with a t -

value = 47.73 and p-value <0.0001. All the outcomes showed to be insensitive

to gender differences as well as education levels (see Table 4.1), the 𝜒2 values

showed insignificant p - values. Working in gardens around the Shire river showed

significant differences across all the three outcomes, with p - values <0.001 for

various 𝜒2 values (see Table 4.1). Again, treatment showed to bring significant

differences between the two arms and for outcomes: S. haematobium 𝜒2 = 13.09,

p - value <0.001 and Hookworm 𝜒2 = 10.89, p - value <0.001. The number

of parasites an individual hosted showed significant differences across the three

outcomes with p - values <0.001 and 𝜒2 value = 326.31 for S. haematobium, 𝜒2

= 289.92 for S. mansoni and 𝜒2 = 463.68 for Hookworm.

The key outcome of interest was count data to quantify infection intensity and

prevalence. For Schistosomiasis and Hookworm infections, often a large proportion

of individuals are considered as “zero egg excretors” (Vounatsou et al., 2009) hence
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the data is inflated with zeros. For Hookworm, 80 % were zero egg excretors, 95.7

% for S. mansoni, and 85.8 % for S. haematobium (see Figure 4.2)

Figure 4.2: Zero inflated outcomes’ counts for S. mansoni, S. haematobium and
Hookworm
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4.1.2 Polyparasitism

In tropical environments, Schistosomiasis, geohelminths, malaria and lymphatic

filariasis, among others, are widespread parasitic infections posing an enormous

toll on socio-economic development of the infected individuals as well as that of

the general population (Ngwira, 2005). Schistosomiasis and Hookworm infections

tend to be highly aggregated in a relatively small, heavily infected proportion

of the population. Data were further analysed to investigate the epidemiology of

multiple species parasite infections in the lower Shire valley. Parasites investigated

in this analysis included Hookworm, S. haematobium, S. mansoni, and lymphatic

filariasis. There were 993 individuals with a complete data set for this analysis.

Of these, 544 (56 %) were female. Number of species and gender distribution is

shown in Figure 4.3.

Figure 4.3: Number of species and gender distribution

There was female excess in all categories and following from Figure 4.1 above, it

was shown that there was female excess in all age groups except in those ≤ 10.
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This was probably a result of males being absent from homes during the study

period as most of them were working on the sugar cane estate where they obtain

temporary employment. Results of this investigation further showed that number

of species reduced with an increase in age as shown in Figure 4.4.

Figure 4.4: Multiple species and age graph

4.1.3 Statistical modeling results

As noted in chapter two (literature review), while the count nature of dependent

variable implies use of a Poisson model or its variants, the methods used in this

study suggest that the process generating the count outcomes was governed by a

two-step structure also called hurdle process. For purposes of comparison, the fol-

lowing count models were estimated: Poisson, NB, Zero-Inflated (ZIP and ZINB)

and Hurdle (Poisson and Negative Binomial) regressions, again including all in-

dependent variables in both transition and event stages in the two-component

models. The LRT for overdispersion between Poisson and NB at 𝛼 = 0.05 showed

a critical value test statistic = 2.71 with a 𝜒2 test statistic = 10606.51, p-value
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<0.0001. Since p-value was <0.0001, there was overwhelming evidence of overdis-

persion. This therefore means that Poisson model was not appropriate for mod-

eling the data hence NB - based models were the alternative. Table 4.2 gives a

summary of Akaike Information Criterion (AIC) from the fitted models.

Table 4.2: Akaike information criterion (AIC)

Poisson Neg. Bin. ZIP ZINB PLH NBLH

AIC 14,182 3, 576 6, 854 3, 484 6, 854 3, 482

From Table 4.2, Negative Binomial Logit Hurdle (NBLH) showed to have the

lowest AIC = 3,482, proving to be the model offering the best fit to data, however it

had similar performance with ZINB model (AIC = 3,484). The Poisson model was

inferior to all other fits with AIC = 14, 182 whereas NB based models dramatically

improved the fit that is, for Neg. Bin model, AIC = 3, 576. This also reflects that

overdispersion data was captured better by NB-based models than Poisson. Table

4.3 compares models in terms of zero count capturing ability. The Poisson model

was again not appropriate as it could only capture 515 of the zeros whereas the

NB-Zero adjusted based models were much better in capturing the zero counts.

The NBLH model captured 971 zeros counts but was very comparable with ZIP

and PLH models which each captured 970 zero counts. This therefore means that

NB logit hurdle offered the best fit to zero inflated data for S. Haematobium, S.

Mansoni and Hookworm.

Table 4.3: Zero count capturing

Observed Poisson Neg. Bin ZIP ZINB PLH NBLH

971 515 968 970 969 970 971

Since NB Logit Hurdle model offered the best fit to zero inflated helminth data

in terms of the AIC (minimum value for all the models fitted) as well as true

zero count capturing, it therefore became a natural choice for fitting a final model
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to model helminths infection intensity and determination of factors that foster

infections.

4.1.4 Fixed effects of infection probability

Table 4.4 provides estimates for fixed effects. The probability of S. haematobium

infection was found to be associated with age (Adjusted Odds Ratio (AOR) =

0.97, 95 % Confidence Interval (CI): 0.96–0.99), with the risk of S. haematobium

infection decreasing with age. The risk of infection was low in males than in

females (AOR = 0.61, 95 % CI: 0.41–0.89). There was no association between

risk of S. haematobium infection with education at both primary level (AOR =

1.18, 95 % CI: 0.81–1.71) and secondary level (AOR = 1.37, 95 % CI: 0.41–4.60)

relative to no education. S. haematobium infection risk was also found to be

associated with treatmment arm (AOR = 0.38, 95 % CI: 0.26–0.54) with those

in intervention arm at a reduced risk of infection relative to control arm. There

was a positive though insignificant association between S. haematobium infection

probability and fishing (AOR = 0.73, 95 % CI: 0.44–1.20). Working in gardens

along Shire river was observed not to be associated to S. haematobium presence

(AOR = 1.34, 95 % CI: 0.90–1.99). Again, occupation (farmer/other) showed an

association with S. haematobium infection probability though not signficant (OR

= 0.61, 95 % CI: 0.35–1.06). Risk of infection increased with number of parasites

an individual was hosting (Table 4.4) (AOR = 7.30, 95 % CI: 5.56–9.59).

For S. Mansoni, infection probability was associated with age, in that as age was

increasing, the risk of infection decreased (AOR = 0.98, 95 % CI: 0.96–1.00).

Similar to S. haematobium, S. Mansoni infection risk was low in males than in

females (AOR = 0.55, 95 % CI: 0.31–0.97). There was an association between risk

of S. Mansoni infection and treatment arm, that is, whether the village recieved

intervention (MDA) or not, (AOR = 1.41, 95 % CI: 0.77–2.57), however from

the 95 % CI, the association was not significant. Similar with S. haematobium, S.
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Mansoni infection risk showed insignificant association with working in the garden

(AOR = 1.30, 95 % CI: 0.66–2.54). Deworming and bathing in the river showed

positive but insignicant associations as well, see Table 4.4. Again, similar to S.

haematobium, having one parasite increased the risk of getting infected with other

parasites (AOR = 5.78, 95 % CI: 4.15–8.06).

Hookworm infection risk was positively associated with age, with high risk as age

was increasing (AOR = 1.02, 95 % CI: 1.01–1.03). There was a positive associa-

tion between Hookworm infection and gender, with males showing higher risk of

infection than females though this result was not significant (AOR = 1.04, 95 %

CI: 0.78–1.38). Education and fishing showed positive but insignficant associa-

tion with Hookworm infection, see Table 4.4. Those working in gardens showed

a strong positive association with Hookworm infection as compared to those that

did not (AOR = 1.32, 95 % CI: 0.99–1.75). Farmers were also at a greater risk

of Hookworm infection as compared to non-farmers (AOR = 2.11, 95 % CI: 1.42–

3.13).
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Table 4.4: Fixed effects estimates for NBLH model (infection probability)

S. haematobium S. Mansoni Hookworm
Variable AOR (95 % CI) AOR (95 % CI) AOR (95 % CI)
Intercept 0.13 (0.06, 0.29) 0.00 (0.00, 0.01) 0.14 (0.08, 0.25)
age 0.97 (0.96, 0.99) 0.98 (0.96, 1.00) 1.02 (1.01, 1.03)
gender:

Female 1.00 1.00 1.00
Male 0.61 (0.41, 0.89) 0.55 (0.31, 0.97) 1.04 (0.78, 1.38)

Education:
None 1.00 1.00
Primary 1.18 (0.81, 1.71) 0.97 (0.74, 1.27)
Secondary 1.37 (0.41, 4.60) 0.35 (0.12, 1.04)

Treatment arm:
Control 1.00 1.00 1.00
Intervention 0.38 (0.26, 0.54) 1.41 (0.77, 2.57) 1.57 (1.21, 2.05)

Fishing:
No 1.00 1.00
Yes 0.73 (0.44, 1.20) 0.58 (0.41, 0.83)

Garden:
No 1.00 1.00 1.00
Yes 1.34 (0.90, 1.99) 1.30 (0.66, 2.54) 1.32 (0.99, 1.75)

Occupation:
Other 1.00 1.00
Farmer 0.61 (0.35, 1.06) 2.11 (1.42, 3.13)

Deworm:
No 1.00
Yes 1.19 (0.61, 2.32)

Bath:
No 1.00
Yes 1.65 (0.64, 4.24)

Polyparasitism 7.30 (5.56, 9.59) 5.78 (4.15, 8.06)

4.1.5 Fixed effects of infection intensity

From Table 4.5, it was observed that S. haematobium infection intensity reduced

with age (Relative Risk (RR) = 0.96, 95 % CI: 0.95–0.98). There was a marginal

difference of infection intensity between males and females (RR = 1.03, 95 %

CI: 0.72–1.47). Primary school children showed a high S. haematobium infection

intensity relative to those that were in pre-school level (RR = 1.54, 95 % CI:
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1.08–2.19) whereas those in secondary level showed a reduced infection intensity

(RR = 0.34, 95 % CI: 0.11–1.06). There was a reduced S. haematobium infection

intensity for those in intervention arm relative to those in the control arm, though,

not significant (RR = 0.81, 95 % CI: 0.58–1.13). A positive association was also

observed between those who did fishing in Shire river and infection intesity (Table

4.5) relative to those who did not do fishing. An increased risk of infection intensity

was observed in those working in gardens relative to those that did not, (RR =

1.21, 95 % CI: 0.82–1.81) and also increased S. haematobium infection intensity

for farmers compared to non-farmers (RR = 1.83, 95 % CI: 1.16–2.91).

For S. Mansoni, there was a positive association with age and intensity showed

to increase with age (RR = 1.01, 95 % CI: 1.00–1.02). There was a reduced S.

mansoni infection intensity for males as compared to females though the difference

was marginal (RR = 0.61, 95 % CI: 0.35–1.08). Village level intevention efforts

reduced infection intenisty with (RR = 0.77, 95 % CI: 0.46–1.28) for those in

intervention arm compared to those in the control arm; this though showed no real

significant association with infection intensity. Infection intenisty for S. mansoni

was higher in those working in gardens as compared to those that did not, however

this association was not very significant (RR = 1.29, 95 % CI: 0.64–2.60). Equally,

there was increased infection intensity for those bathing in Shire river as compared

to those that did not, (RR = 1.46, 95 % CI: 0.45–4.67) though the association

was not significant. Deworming showed to have significantly reduced S. mansoni

infection intensity among the dewormed group as compared to control group, (RR

= 0.52, 95 % CI: 0.27–0.99).

There was a positive association between age and Hookworm infection intensity,

thus as age increased, infection intensity also increased (RR = 1.01, 95 % CI:

1.00–1.03). Intensity of infection was higher in males as compared to females

(RR = 1.19) though not significant (95 % CI: 0.80–1.76). Similar to age, an

increase in education showed to be positively associated with Hookworm infection
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intensity: RR = 1.18 for primary education level and RR = 2.18 for secondary

education level. These however were not signficant (95 % CI: 0.80–1.72) (for

primary education level) and (95 % CI: 0.45–10.55) (for secondary education level).

Fishing (yes/no), working in the garden (yes/no) and occupation (farmer/other)

all showed association with Hookworm infection (see Table 4.5)

Table 4.5: Fixed effects estimates for NBLH model (infection intensity)

S. haematobium S. Mansoni Hookworm
Variable RR (95 % CI) RR (95 % CI) RR (95 % CI)
Intercept 11.72 (5.70, 24.08) 1.48 (0.44, 4.97) 3.65 (1.72, 7.71)
age 0.96 (0.95, 0.98) 1.01 (1.00, 1.02) 1.01 (1.00, 1.03)
gender:

Female 1.00 1.00 1.00
Male 1.03 (0.72, 1.47) 0.61 (0.35, 1.08) 1.19 (0.80, 1.76)

Education:
None 1.00 1.00
Primary 1.54 (1.08, 2.19) 1.18 (0.80, 1.72)
Secondary 0.34 (0.11, 1.06) 2.18 (0.45, 10.55)

Treatment arm:
Control 1.00 1.00 1.00
Intervention 0.81 (0.58, 1.13) 0.77 (0.46, 1.28) 1.25 (0.87, 1.80)

Fishing:
No 1.00 1.00
Yes 0.68 (0.45, 1.03) 0.90 (0.58, 1.40)

Garden:
No 1.00 1.00 1.00
Yes 1.21 (0.82, 1.81) 1.29 (0.64, 2.60) 1.12 (0.75, 1.67)

Occupation:
Other 1.00 1.00
Farmer 1.83 (1.16, 2.91) 0.86 (0.49, 1.53)

Deworm:
No 1.00
Yes 0.52 (0.27, 0.99)

Bath:
No 1.00
Yes 1.46 (0.45, 4.67)

Polyparasitism 0.87 (0.70, 1.08) 0.91 (0.69, 1.18)
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4.1.6 Residual spatial effects

Distribution of residuals across the study area was analysed to check for spatial

patterns. Estimating the continuous surface using interpolation function, spatial

patterns in the residuals were observed and subsequently mapped, (Figure 4.5).

Figure 4.5: Estimated residual spatial effects, given in odds ratios

From the visual inspection of Figure 4.5, there was some degree of spatial de-

pendence in residuals distribution across the study area. This encouraged further

exploration using variogram analysis to quantify the range of spatial dependence

and apportioning of variance into spatial and non-spatial components. Common

descriptive statistics and histograms fail to identify, and quantify textural differ-
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ences in the data, and they do not incorporate spatial locations of data into their

defining computations. Variogram is a quantitative descriptive statistic that can

be graphically represented in a manner which characterizes the spatial continuity

(that is, roughness) of a data set. Empirical variogram suggested two models that

have been fit, namely: exponential and spherical variogram models (Figure 4.6).

Figure 4.6: Exponential and spherical variogram plots based on the deviance
residuals.

From the variogram plots (Figure 4.6), geometric anisotropy behaviour was ex-

hibited by the residuals. The magnitude of spatial correlation decreased with

separation distance until a distance at which no spatial correlation existed.
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4.1.7 Discussion

The current study found a prevalence of 19.4 % for S. haematobium in Chikhwawa

district. The finding highlights the fact that S. haematobium infections are highly

localised (see Figure 4.5). The overall prevalence of S. haematobium was well

below expectations. Based on a previous study in Malawi, overall prevalence of

Schistosomiasis was thought to be between 40 % and 50 % in the population.

These were surveys of selected populations, perhaps undertaken in the season of

high transmission (Bowie, Purcell, Shaba, Makaula, & Perez, 2004). Certainly, the

diseases are domiciled and localised in Malawi. The finding serves to highlight the

fact that helminths infections were highly localised (see Figure 4.5), and that na-

tional wide surveys tend to overstep focus of heterogeneity of infection. In a study

conducted in the northern lakeshore area by Randal et al. (2002), school children

from four (4) schools were screened and there was a wide range of prevalence:

5 % - 57 % on S. haematobium. A national survey, representative of all school

children in the country, and undertaken just before the rainy season, suggested

far lower levels of 7 % for S. haematobium (Bowie et al., 2004). The prevalence

for S. mansoni in Chikhwawa district was 5.0 %. The findings highlights the fact

that S. mansoni was not common. A previous study showed a prevalence of 0.4

% for S. mansoni in standard 3 pupils (modal age 10 years of age) (Bowie et

al., 2004). The prevalence of Hookworm was 22.9 %, well above previous studies’

findings. Bowie et al. (2004) reported a prevalence of 1.3 % (95 % CI : 0.4-2.3 %)

for Hookworm.

Robust and contemporary statistical methods in a two part application were used

to analyse risk factors for S. haematobium, S. mansoni and Hookworm infection

intensity and prevalence. This resulted in estimates of parasitic infection intensity

and prevalence that could be used in control programmes planning. In this study,

intensity and prevalence of helminths were examined in relation to factors such as

age, sex, education level, treatment arm, fishing in Shire river, working in gardens,
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occupation and polyparasitism. The study confirmed the critical importance of

ascertaining infection intensity. The higher the intensity of helminths infection,

the higher the burden.

S. haematobium and S. mansoni infection intensity showed a reduction with an

increase in age. This confirmed what previous studies found. Chan et al. (1997)

report that in common intestinal helminths such as Ascaris lumbricoides (large

roundworms) and Trichuris trichiura (whipworm) and Schistosomiasis, children

are more heavily affected and infected than adults. Several other studies have

reported that school-aged children show high infection intensity and prevalence

(Bowie et al., 2004; Saathoff et al., 2004; Midzi et al., 2011). Unlike Schistosomia-

sis, Hookworm infection intensity showed an increase with age. Chan et al. (1997)

report that Hookworm is more common in adults which means that child-targeted

chemotherapy programmes advocated for the treatment of other species may be

less appropriate in the mass control of Hookworms. Exposure differences for Hook-

worm are responsible for differences between children and adults; as Hookworm is

generally transmitted in the fields (where adults work) as opposed to near homes

(where children play).

Fishing in Shire river and working in gardens along the river were clear risk factors

for exposure to helminths and subsequent infection because transmission requires

contact with the aquatic habitat of intermediate host snails as well as with soil.

Clements et al. (2010) report for a study that was conducted in western Africa

that contact with water bodies that are a habitat for intermediate host snails is

one of the main risk factors. Results showed low probability of infection for males

compared to females. This could be explained by a number of factors including

that Malawi being an agriculture based economy, with females mainly carrying

out agricultural activities,they are more exposed to risk factors such as working

in gardens and farming.

Individuals who had received chemotherapy cure for helminth showed reduced
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risk of infection as well as infection intensity as compared to those in the control

area. Evidence has shown that, following chemotherapeutic cure of S. mansoni or

S. haematobium infection, older individuals display a resistance to reinfection in

comparison to younger children (Roberts et al., 1993). This shows that there is

need to direct control and interventions for helminths to areas with diseases burden

in order to reduce and/or eradicate infections - more especially in children.

Several studies have shown that having one infection is a risk factor for getting

other infections. It is conceivable that the first parasite that establishes an in-

fection may modulate body’s immune response in such a way that it makes it

easier for the next parasite to infect the body (Ngwira, 2005). Results from the

current analysis have shown that polyparasitism was common in the population

of Chikhwawa especially among females. Results also suggested that morbidity

may be associated with number of parasite species an individual was carrying.

Worth noting are differences that existed in the associations between infection

probability and infection intensity. For gender, males had a reduced risk of in-

fection as compared to females (negative association) but high infection intensity

(positive association). This could possibly be explained by the fact that women

were mostly involved in agricultural activities there by being more exposed to risk

factors. Also, for those infected (males), many studies find that men visit public

health care facilities much less frequently than do women (Kuwane et al., 2009;

Myburgh, 2011) hence the high intensity.

Polyparasitism was positively associated with infection probability but had a neg-

ative association with infection intensity. This could be explained by the fact that

having other parasites increases the chance of the body being susceptible to new

parasite infections (Cassia et al., 2007). Secondary level of education had a posi-

tive association with infection probability but showed a negative association with

infection intensity. This finding could be explained by the fact that education may

correspond to increased awareness and access to treatment (Spear et al., 2004) by
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this group hence reduced intensity. A study by Spear et al. (2004) found out that

those with highest level of education, that is, through high school, showed the

lowest mean infection intensity.

Being a farmer had a negative association with probability of infection and a

positive association with infection intensity. The finding was in line with what

Spear et al. (2004) accounted. In their study, farmers showed highest levels of

Schistosomiasis infection among occupational groups. Spear et al. (2004) reported

that both education and occupation were proxies for nature and intensity of water

contact. Amhanyunonsen (2009) reported that individuals become infected by

prolonged contact (like farm irrigation, bathing, washing or swimming) with fresh

water containing free-swimming cercariae.

4.2 Results of analysis for urinary Schistosomi-

asis in school children in Lusaka Province,

Zambia

4.2.1 Descriptive statistics results

Table 4.6 gives characteristics of study population. A total of 2040 school children

aged 6 to 15 years were enrolled into the study from 20 selected primary schools in

the two districts, Kafue and Luangwa, 1909 (93.5 %) provided urine samples for

parasitological examination. The remaining children 131 (6.5 %) did not provide

urine samples for examination. Overall S. haematobium prevalence rate for two

districts was 9.6 % (range: 0 – 36.1 %). Infection intensity had a mean of 31.4

eggs/10ml (range: 0 – 120 eggs/10ml). However there was a significant difference

in the mean intensity of infection, with 40.2 (range: 3 – 53.1 eggs/10ml) observed

in Kafue district and 22.6 (range: 0 – 116.0 eggs/10ml) in Luangwa district. For

Schistosomiasis, a large proportion of individuals were “zero egg excretors” (84.6

%) - see Figure 4.7.
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Table 4.6: Characteristics and intensity of infection with S. haematobium in 2040
children from 20 schools in Lusaka Province, Zambia, 2004

Variable Mean(Std. Dev) Number(%) t 𝜒2 P-value
Intensity of infection

No infection (0 eggs/ml: epm) 1726 (84.6)
Light infection (1-100 epm) 139 (6.8)
Mod/heavy infection (>100 epm) 44 (2.2)

Age (years) 9.98 (2.14)
6-9 years 1130 (55.4) 4.0 0.059
10-15 years 900 (44.1)

Sex
Female 1027 (50.4) 2.4 0.124
Male 1000 (49.0)

Altitude
Plateau 723 (35.4) 29.5 <0.0001
Valley 1316 (64.5)

NDVI 138.2 (5.1) 1280.47 <0.0001
TMAX 19.6 (2.9) 282.26 <0.0001
Snail abundance (B. globosus) 25.3 (29.9) 30.82 <0.0001

Similar to results from Malawi study, gender showed to be insensitive to uri-

nary Schistosomiasis prevalence and intensity with a 𝜒2 = 2.4 and a p-value =

0.124. Age showed marginal differences between the 6-9 years and 10-15 years age

groups, 𝜒2 = 4.0 with p-value = 0.059 (see Table 4.6). With a 𝜒2 = 29.5, altitude

showed significant difference between valleys and plateaus in influencing infection

prevalence and intensity. From Table 4.6, Normalised difference vegetation index

(NDVI) (t = 1280.47, p-value <0.001 ) showed a significant impact on urinary

Schistosomiasis. Again, Tmax (t = 282.26) and snail abundance (t = 30.82) both

with p-values <0.001 also showed significant impact on urinary Schistosomiasis.
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Figure 4.7: Zero inflated outcome count for urinary Schistosomiasis

4.2.2 Statistical modeling results

Zero Inflated (ZIP/ZINB) and hurdle (NBLH) models were compared using Akaike

Information Criteria (AIC) (Akaike, 1973). Table 4.7 shows AIC values for the

three estimated models. NBLH model had a lowest AIC and therefore the best

fitting (AIC = 3,230 versus AIC = 3,232 in ZINB model). From NBLH model

(Table 4.7), probability of urinary Schistosomiasis infection was shown to have a

significant association with age - thus infection probability was lower in 6 - 9 years

age group (AOR = 0.69, 95 % CI: 0.50–0.94). NBLH results showed lower risk

in younger children as compared to older children. Infection probability showed

a positive association with sex (AOR = 1.17, 95 % CI: 0.86–1.60) though there

was no significant difference between females and males. However, significant dif-

ferences in infection probability were observed between valley and plateau (AOR

= 0.37, 95 % CI: 0.25–0.53) with those in the valley being at reduced risk of in-

fection compared to those in the plateau. A positive relationship was observed

between snail abundance and risk of infection, though marginally significant at

5 % (AOR=1.00, 95 % CI: 1.00-1.01). Marginal positive associations were ob-
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served between urinary Schistosomiasis and NDVI (the mean Dec-Nov biannual

composites of NDVI) with AOR=1.04 (95 % CI: 1.00-1.07), as well as with Tmax

(maximum temperature) (AOR=0.99, 95 % CI: 0.94-1.04).

Table 4.7: Estimated adjusted odds ratios (AORs) of factors associated with Uri-
nary Schistosomiasis infection obtained from the zero adjusted models

ZIP Model ZINB Model NBLH Model
AOR (95 % CI) AOR (95% CI) AOR (95 % CI)

Age
6 - 9 years 1.46 (1.06, 2.00) 1.43 (0.96, 2.11) 0.69 (0.50, 0.94)
10 - 15 years 1.00 1.00 1.00

Gender:
Male 0.85 (0.62, 1.16) 0.87 (0.59, 1.28) 1.17 (0.86,1.60)
Female 1.00 1.00 1.00

Altitude
Valley 2.73 (1.89, 3.96) 2.38 (1.46, 3.89) 0.37 (0.25, 0.53)
Plateau 1.00 1.00 1.00

Tmax 1.01 (0.96, 1.07) 0.99 (0.92, 1.05) 0.99 (0.94, 1.04)

NDVI 0.96 (0.93, 1.00) 0.97 (0.92, 1.01) 1.04 (1.00, 1.07)
Snail abundance 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.01)

Model Selection

AIC 148, 734 3, 232 3, 230

From Table 4.8, infection intensity was observed to be marginally associated with

age (RR = 0.55, 95% CI: 0.25–1.19). Similar to infection probability pattern,

intensity was lower in younger age group relative to older age group. Sex was

positively associated with infection intensity, with increased intensity in males

relative to females (RR = 1.28, 95 % CI: 0.57–2.87) albeit insiginficant. It was

observed that children in the valley had low urinary infection intensity relative to

those in plateaus (RR = 0.11, 95 % CI: 0.04–0.28). Temperature was negatively

associated with urinary Schistosomiasis intensity (RR = 0.75, 95 % CI: 0.75–0.94).

Snail abundance was marginally associated with infection intensity (RR = 1.00, 95

% CI: 0.99–1.01). A positive association was observed between infection intensity

and NDVI (mean Dec-Nov biannual composites of NDVI) (RR = 1.07, 95 % CI:

0.99–1.16) .
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Table 4.8: Estimated relative risk (RRs) factors associated with Urinary Schisto-
somiasis infection obtained from the zero adjusted models

NBLH Model
RR (95%CI)

Age
6 - 9 years 0.55 (0.25, 1.19)
10 - 15 years 1.00

Gender:
Male 1.28 (0.57, 2.87)
Female 1.00

Altitude
Valley 0.11 (0.04, 0.28)
Plateau 1.00

Tmax 0.84 (0.75, 0.94)
NDVI 1.07 (0.99, 1.16)
Snail abundance 1.00 (0.99, 1.01)

4.2.3 Discussion

Factors associated with S. haematobium infection among school children in Lusaka

province were quantified using Negative Binomial Logit Hurdle (NBLH). The pro-

portion with light infection (6.81 %) and moderate to high infection (2.2 %) were

very low (Table 4.6 and Figure 4.7) compared to no infection (84.6 %). This

finding related well with results obtained from helminths study (described above)

carried out in Chikhwawa district, Malawi. Previous studies on helminths have

highlighted that infection prevalence is usually low (Bowie et al., 2004) but highly

focalised in a locality - with few individuals hosting large numbers of parasites.

Both infection prevalence and intensity showed differences in relation to the two

age groups that were considered (Tables 4.6 and 4.7). The younger age group

showed reduced infection risk and intensity as compared to older children. The

differences were as a result of increased risk-behaviour of older school children who

frequently contacted schistosome-infested water for both domestic and livestock

purposes relative to younger children (Simoonga et al., 2008). Schistosomiasis

is water dependent disease and incidence is usually more amongst people who

61



constantly interact with schistosome infected waters through activities such as

farming, fishing, swimming and laundry (Amhanyunonsen, 2009).

In terms of gender, males showed increased infection risk and intensity albeit

not significantly different from females, implying that infection prevalence and

intensity were not gender selective. This could be explained by the fact that

interaction with schistosome infested water was gender independent as both groups

were involved with behavioral activities such as swimming, washing and farming.

The results obtained were similar to a study that was done in Etsako east LGA,

Edo state, Nigeria. In the study, Amhanyunonsen (2009) reported that disease

impact was common to both males and females, although more males than females

were found to be infected.

Results indicated that both prevalence and intensity of infection were low for

school children in the valleys than those in plateaus. In relation to this find-

ing, Simoonga et al. (2008) accounted that during dry season, school children on

plateaus usually had a higher degree of water-contact unlike those in the valley.

The reason was that water sources for domestic and livestock purposes remained

relatively unlimited due to perennial rivers flowing through such as the Zambezi

River. Temperature was shown to be a clear factor for Schistosomiasis infection.

Warmer temperatures have been reported as being optimal for the development

and maintenances of a B. globosus – S. haematobium system (Simoonga et al.,

2008).

A study by Zhou et al. (2008) found a temperature threshold of 15.4 ∘C for devel-

opment of S. japonicum within the intermediate host snail (that is, Oncomelania

hupensis), and a temperature of 5.8 ∘C at which half the snail sample investigated

was in hibernation.

As expected and observed, NDVI and abundance of intermediate host snails (Buli-

nus globosus) had influence on the transmission of urinary Schistosomiasis. One of

the significant factors for Schistosomiasis transmission in an area is the successful
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development of intermediate host snail-parasite system.
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Chapter 5

RECOMMENDATIONS AND
CONCLUSION

The apparent dominance of agricultural, environmental, socio-economic and de-

mographic factors in determining human helminths infection risk in the commu-

nities carries important implications for disease surveillance and control strate-

gies. Prevalence of helminths was highly associated with age of an individual as

well as occupational/behavioral activities (such contact with infected water) and

also number of parasites an individual hosted. Furthermore, helminths infection

intensity was associated with gender, education level, garden, abundance of inter-

mediate host snails, occupation and treatment (intervention). Results presented

therefore highlight the need to understand environmental and human behavior

patterns with respect to contact and contamination in human helminth epidemi-

ology.

Cercariae control through environmental modifications and strategies involving

socio-economic status improvement and MDA may be more promising approaches

to disease control in the infected settings. Thus, it is important that an inte-

grated approach within a primary health care system is adopted by ensuring in-

fection source reduction through control of intermediate host snails combined with

chemotherapy for morbidity control. Behavioral factors, such as water and soil

contact activities have been shown to be particularly important for risk mapping
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in both applications describe above. Therefore, helminths control programmes

should consider provision of safer alternative water sources for both domestic and

livestock purposes during dry season when the only available water sources are

collected pools that are often infested with S. haematobium-infected snails. For

Hookworm, awareness and ensuring the use of protective wear when working in

the fields could also be promising. Again, treatment to adults, perhaps targeted

to particular risk groups, may be advisable in addition to the usually practiced

child-based chemotherapy.

In both applications for data from Chikhwawa district, Malawi and Lusaka province,

Zambia, results have indicated that the risk of infection with helminths is hetero-

geneous. This therefore calls for the need to undertake further focalised studies

to ascertain further exposure risk factors. By applying the methodology to two

different applications, the study managed to use schools as spatial points in one

application and also used households as spatial points in another application in

assessing high infection risk areas.

The study has constructed a set of statistical models (ZI and Hurdle) which can be

used together with planning interventions in human helminths and other helminth

parasite systems. Zero adjusted methods represent a key advance in the analysis

of helminth disease data inflated with zeros. There is an increasing number of

examples in published literature where two part methods are being used for zero

inflated data for disease control planning and implementation programmes. The

joint modeling approach has allowed identification of risk factors for both infection

prevalence and severity and provide a platform to evaluate progress of control

efforts (that is, comparison of intervention (MDA) and control arms arm). Use of

such robust methods also allowed discovery of important differences between the

two outcomes (infection presence and severity). This has an implication in that it

necessitates improvement of interventions designing.
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The choice between Hurdle and Zero-Inflated models should be based on the aim

and study endpoints. If the goal is prediction, it is not important which modeling

framework is used, because predictions are (almost) identical. However, if the goal

is inference, model choice is related to the study goal. Statistical modeling results

presented have shown that NBLH offered the best fit to zero inflated data with

a capability to handle overdispersion and excess zeros as well as capturing true

zeros in the data.

The NBLH approach allows the decomposition of effects of factors into participa-

tion and consumption decisions: participation decision (helminths infection pres-

ence/absence) and consumption/frequency decision (helminths parasite counts or

intensity). The NBLH also allows accounting for both unobserved heterogeneity

and excess zeros in zero inflated data. The ease of implementation and straightfor-

ward interpretation of the components and its direct link with observed data makes

the NBLH model a valuable alternative for researchers analysing zero-inflated

count data.
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Appendix A

R Code snippets

Some of packages used

library(pscl)

library(geoR)

library(MBA)

Histogram plotting

hist(shegml, col = “blue”, plot = TRUE, xlab = “S. haematobium parasites”,

ylab = “number”, main = “Schistosoma Haematobium Parasite Counts”)

Poisson model fitting

poissh <- glm(sh ∼ age + gender +education + intervention +fishing + garden

+ occupation + polyparasitism, data=mydata, family = poisson)

summary(poissh)

confint(poissh)

Zero inflated negative binomial model fitting

zinbsh <- zeroinfl(sh ∼ age + gender +education + intervention +fishing + garden

+ occupation + polyparasitism, data=mydata, dist= “negbin”)
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summary(zinbsh)

confint(zinbsh)

Negative binomial logit Hurdle model fitting

hurdlenbsh <- hurdle(sh ∼ age + gender +education + intervention +fishing +

garden + occupation + polyparasitism, data=mydata, dist=“negbin”, zero.dist =

“binomial”, link = “logit”, control = hurdle.control(method = “BFGS”, maxit =

10000, trace = TRUE, separate = TRUE))

summary(hurdlenbsh)

confint(hurdlenbsh)

Comparing Models’ Full Likelihood

rbind(logLik = sapply(comparesh, function(x) round(logLik(x), digits = 0)), Df

= sapply(comparesh, function(x) attr(logLik(x), “df”)))

Zero count capturing

round(c(“Obs” = sum(mydata$sh ¡ 1), “ML-Pois” = sum(dpois(0, fitted(poissh))),

“NB” = sum(dnbinom(0, mu = fitted(nbsh), size = nbsh$theta)),“ZIP” = sum

(predict(zipsh, type = “prob”)[,1]), “ZINB” = sum(predict(zinbsh, type = “prob”)

[,1]), “Poison-Hurdle” = sum(predict(hurdlepsh, type = “prob”)[,1]), “NB-Hurdle”

= sum (predict (hurdlenbsh, type = “prob”)[,1])))

Visual residual spatial effects inspection

x.res <- 200

y.res <- 200

surf <- mba.surf(cbind(coords, rex), no.X = x.res, no.Y = y.res, h = 5, m = 2,

extend = FALSE)$xyz.est

image.plot(surf, xaxs = “r”, yaxs = “r”, xlab = “South”, ylab = “East”, main =

“Residual spatial effects”, col = col.br(25))

drape.plot(surf[[1]], surf[[2]], surf[[3]], col = col.br(150), theta = 225, phi = 50,

border = FALSE, add.legend = FALSE, xlab = “South”, ylab = “East”, zlab =

“Residuals”)
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image.plot(zlim = range(surf[[3]], na.rm = TRUE), legend.only = TRUE, hori-

zontal = FALSE)

Variogram plotting

res.vario <- variog(res.geo1, max.dist=35)

plot(res.vario, main = “Spherical Model”)

res.model1 <- list(cov.model = “sph”, cov.pars = c(0.20, 12), nugget=0.1, max.dist

= 35)

lines.variomodel(res.model1, lty = 2)

res.vario <- variog(res.geo1, max.dist=35)

plot(res.vario, main = “Exponential Model”)

res.model <- list(cov.model = “exp”, cov.pars = c(0.20, 12), nugget=0.12, max.dist

= 35)

lines.variomodel(res.model, lwd = 2)
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Appendix B

Residual spatial effects figure

Figure B.1: Estimated residual spatial effects, given in odds ratios
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